测绘通报 ›› 2024, Vol. 0 ›› Issue (8): 66-72.doi: 10.13474/j.cnki.11-2246.2024.0812

• 学术研究 • 上一篇    

融合GNSS和加速度计的超高层建筑动态形变分析

王帅, 尹川, 孙昱, 王坚   

  1. 北京建筑大学测绘与城市空间信息学院, 北京 102616
  • 收稿日期:2024-05-14 发布日期:2024-09-03
  • 通讯作者: 尹川。E-mail:yinchuan@bucea.edu.cn
  • 作者简介:王帅(2000—),男,硕士生,研究方向为GNSS形变监测技术。E-mail:wangshuaiwwsss@163.com
  • 基金资助:
    国家自然科学基金面上项目(42274029)

Dynamic deformation analysis of super high-rise buildings by integrating GNSS and accelerometers

WANG Shuai, YIN Chuan, SUN Yu, WANG Jian   

  1. School of Geomatics and Urban Spatial Informatics, Beijing University of Civil Engineering and Architecture, Beijing 102616, China
  • Received:2024-05-14 Published:2024-09-03

摘要: 针对全球卫星导航系统(GNSS)在超高层建筑形变监测中存在的多路径误差严重、监测精度不可靠等问题,本文通过构建可调节Q因子小波变换的系统趋势分离与滤波去噪模型,构建基于Kalman滤波、RTS平滑的数据融合算法,从而进行GNSS与加速度计数据融合;利用可调因子Gabor小波变换实现融合位移中动态形变信息的提取,并与加速度计数据二次频域积分后的动态位移进行对比,验证融合模型的有效性。模拟试验结果表明,本文构建的融合位移算法可有效还原真实数据,融合位移数据的均方根误差为0.088 5 mm,互相关系数为0.993 4,信噪比为17.53。通过超高层实测数据进一步验证,本文方法实现了GNSS和加速度计数据的消噪与融合,能够提取融合数据中的动态形变信息,提高了形变监测的精度,为超高层建筑动态形变分析提供了有效方法。

关键词: 可调节因子的小波变换, 卡尔曼滤波, 频域积分, 数据融合, 超高层建筑

Abstract: In view of the serious multi-path error and unreliable monitoring accuracy of GNSS in the deformation monitoring of super high-rise buildings, this paper constructs a data fusion algorithm based on Kalman filtering and RTS smoothing for the fusion of GNSS and accelerometer data by constructing a systematic trend separation and filtering and denoising model with tunable Q-factor wavelet transform. The dynamic deformation information in the fused displacement is extracted using the tunable factor Gabor wavelet transform, and the validity of the fusion model is verified by comparing with the dynamic displacement after the quadratic frequency domain integration of the accelerometer data. The simulation results show that the fusion displacement algorithm constructed in this paper can effectively restore the real data, the root mean square error of the fused displacement data is 0.088 5 mm, the correlation number is 0.993 4, and the signal-to-noise ratio is 17.53. Through the super high-rise building measured data, the method in this paper achieves the noise cancellation and the data fusion of GNSS and accelerometer, and is able to extract the dynamic deformation information in the fused data, which improves the accuracy of the deformation monitoring and provides an effective method for the analysis of dynamic deformation of super high-rise buildings.

Key words: tunable factor wavelet transform, kalman filter, frequency domain integration, data fusion, super high-rise building

中图分类号: