测绘通报 ›› 2025, Vol. 0 ›› Issue (2): 48-52,63.doi: 10.13474/j.cnki.11-2246.2025.0209

• 学术研究 • 上一篇    下一篇

基于多源遥感的巨型滑坡四维特征解译——以糯勒滑坡为例

严胜航1, 李素敏1,2, 郭军2, 宋昱霏1, 沈显名1   

  1. 1. 昆明理工大学国土资源工程学院, 云南 昆明 650093;
    2. 云南省高校高原山区空间信息测绘技术应用工程研究中心, 云南 昆明 650093
  • 收稿日期:2024-05-29 发布日期:2025-03-03
  • 通讯作者: 李素敏。E-mail:153064487@qq.com
  • 作者简介:严胜航(1998—),男,硕士,主要研究方向为InSAR三维形变监测。E-mail:824344600@qq.com
  • 基金资助:
    国家自然科学基金(52364020;42161067);云南省基础研究计划面上项目(202301AT070463)

Interpretation of four-dimensional characteristics of giant landslides based on multi-source remote sensing: a case study of the Nuole landslide

YAN Shenghang1, LI Sumin1,2, GUO Jun2, SONG Yufei1, SHEN Xianming1   

  1. 1. Faculty of Land Resources Engineering, Kunming University of Science and Technology, Kunming 650093, China;
    2. Research Center for the Application of Spatial Information Surveying and Mapping Technology in Plateau Mountainous Areas of Universities in Yunnan Province, Kunming 650093, China
  • Received:2024-05-29 Published:2025-03-03

摘要: 巨型深层滑坡突发性强、危害性大,地面调查或单一遥感手段难以掌握其空间动态。本文以糯勒滑坡为例,采用机载激光雷达、光学遥感、小基线集合成孔径雷达干涉测量(SBAS-InSAR)等多源遥感技术对滑坡展开解译。首先,利用LiDAR数据生成山体阴影图,结合无人机DOM解译出滑坡发育有三级台阶,裂缝29条,垮塌区4处,新生滑塌4处。然后,利用不同时期光学影像以及DEM数据探究典型特征点水平位移,揭示了11年时间维度内平面形变时空演化规律,发现滑坡中下部区域形变活跃,最大水平位移量为6.2 m;最后,利用SBAS-InSAR技术获取升降轨2019年1月至2023年5月LOS向形变,在此基础上,引入坡向数据对LOS向解算结果进行二维分解,获取滑坡真实形变,其中垂直向最大形变量为-650 mm,沿坡向最大形变量为500 mm,结果显示滑坡体长期处于运动状态。此外,研究还发现滑坡前缘受侵蚀作用影响,后缘受地表水下渗影响,导致滑坡体的形变方向主要沿坡向和垂直方向,与牵引式滑坡形变机理相吻合,为牵引式滑坡的识别与发育机理研究提供了重要参考。

关键词: 滑坡, SBAS-InSAR, LiDAR, 形变分析

Abstract: Giant deep-seated landslides are sudden and highly hazardous, making it difficult to grasp their spatial dynamics through ground surveys or single remote sensing methods. Taking the Nuole landslide as an example, this study employs multiple remote sensing technologies such as airborne LiDAR, optical remote sensing, and small baseline subset InSAR (SBAS-InSAR) for landslide interpretation. Initially, using LiDAR data, shaded relief maps are generated to interpret the development of the landslide, revealing three terraces, 29 cracks, 4 collapse areas, and 4 newly formed sliding areas. By analyzing optical images from different periods and DEM data, the horizontal displacement of typical feature points is explored to reveal the spatiotemporal evolution of planar deformation over an 11-year period. It is discovered that the lower part of the landslide area exhibits active deformation, with a maximum horizontal displacement of 6.2 meters. SBAS-InSAR technology is used to obtain line-of-sight (LOS) deformation from ascending and descending orbits between January 2019 and May 2023. Furthermore, slope direction data is introduced to decompose the LOS displacement results into two dimensions, revealing the true deformation of the landslide. The maximum vertical deformation is -650 mm, and the maximum horizontal deformation along the slope direction is 500 mm, indicating that the landslide has been in a long-term active state. Additionally, the study found that erosion affects the front edge of the landslide, while surface water infiltration affects the rear edge, resulting in deformation primarily along the slope and vertical directions, consistent with the mechanism of traction-induced landslide deformation. This research provides important references for identifying and studying the development mechanism of traction-induced landslides.

Key words: landslide, SBAS-InSAR, LiDAR, deformation analysis

中图分类号: