测绘通报 ›› 2025, Vol. 0 ›› Issue (2): 96-100,107.doi: 10.13474/j.cnki.11-2246.2025.0217

• 学术研究 • 上一篇    下一篇

基于自注意力变换网络的多源空间数据融合方法在变电站汛情降水预报中的应用

原辉, 俞华, 孟晓凯, 范晶晶, 李劲松   

  1. 国网山西省电力公司电力科学研究院, 山西 太原 030001
  • 收稿日期:2024-09-12 发布日期:2025-03-03
  • 作者简介:原辉(1988—),女,硕士,高级工程师,研究方向为电力气象及电网防灾减灾。E-mail:yuanhui@sx.sgcc.com.cn
  • 基金资助:
    国网山西省电力公司科技项目(52053023000D)

Application of multi-source spatial data fusion method based on self-attentive transform network in flood and precipitation forecasting at substation

YUAN Hui, YU Hua, MENG Xiaokai, FAN Jingjing, LI Jinsong   

  1. State Grid Shanxi Electric Power Research Institute, Taiyuan 030001, China
  • Received:2024-09-12 Published:2025-03-03

摘要: 随着近年来极端天气事件的频率和规模不断增加,利用先进技术提升测绘和地理信息系统的精度与效率,从而提高户外露天常规输变电子站电力系统的抗灾能力显得尤为重要。本文提出了一种基于自注意力变换网络的多源空间数据融合方法,用于提升对复杂地理环境和自然资源变化的监测与预测能力。该方法将连续气象雷达回波数据表示为时空序列,利用自注意力机制编码器捕捉长期时间依赖关系,并整合多尺度卷积提取短期时间依赖关系;此外,在变换网络中引入图注意力网络,以深入分析不同空间变量之间的关系。为验证该模型的有效性,基于2019—2022年某地区的降水数据与遥感数据进行试验,并与传统的卷积神经网络、基准U-Net和长短时记忆网络进行对比。结果表明,该方法在测量精度和数据融合能力上优于传统模型,特别是在地理信息系统构建、工程测量、矿山测量、地籍测绘和海洋测绘等领域具有广泛的应用潜力。

关键词: 雷达回波外推, 降水预报, 长短期记忆, 注意力

Abstract: With the increasing frequency and scale of extreme weather events in recent years, it is particularly important to utilize advanced technologies to enhance the accuracy and efficiency of mapping and geographic information systems, so as to improve the resilience of power systems in outdoor open-air conventional transmission and substation substations. In this paper, a multi-source spatial data fusion method based on self-attentive transform network is proposed for enhancing the monitoring and prediction capability of changes in complex geographic environments and natural resources. The method represents continuous weather radar echo data as a spatio-temporal sequence, captures long term time dependencies using a self-attentive mechanism encoder, and integrates multi-scale convolution to extract short term time dependencies. In addition, a graph attention network is introduced into the transformation network to deeply analyze the relationship between different spatial variables. To verify the effectiveness of the model, this paper conducts experiments based on precipitation data and remote sensing data from 2019 to 2022 in a region, and compares it with traditional convolutional neural networks, benchmark U-Net and long-short term memory networks. The experimental results show that the method is superior to the traditional model in terms of measurement accuracy and data fusion ability, especially in the fields of GIS construction, engineering survey, mine survey, cadastral mapping and ocean survey and mapping, etc., which has a wide application potential.

Key words: radar echo extrapolation, precipitation forecast, long-short term memory, attention

中图分类号: