测绘通报 ›› 2025, Vol. 0 ›› Issue (1): 12-15.doi: 10.13474/j.cnki.11-2246.2025.0103

• 智能化电力测绘 • 上一篇    

架空输电线路覆冰厚度图卷积神经网络预测模型构建与应用

范晶晶, 胡帆, 原辉, 张娜, 孟晓凯, 王帅   

  1. 国网山西省电力公司电力科学研究院, 山西 太原 030001
  • 收稿日期:2024-06-20 发布日期:2025-02-09
  • 作者简介:范晶晶(1992—),女,硕士,工程师,主要研究方向为电力气象及电网防灾减灾。E-mail:ybscmy@163.com
  • 基金资助:
    国网山西省电力公司科技项目(52053023000D)

Application of graph convolutional neural network prediction model for overhead transmission line ice cover thickness

FAN Jingjing, HU Fan, YUAN Hui, ZHANG Na, MENG Xiaokai, WANG Shuai   

  1. State Grid Shanxi Electric Power Research Institute, Taiyuan 030001, China
  • Received:2024-06-20 Published:2025-02-09

摘要: 针对架空输电线路覆冰预测问题,本文提出了一种基于图卷积神经网络的预测模型。首先,整合空气相对湿度、风速、气温、导线表面温度、导线温度、环境湿度及导线拉力变化等相关数据,构建了一种包含架空输电线路拓扑结构和环境因素的图模型,将节点定义为线路的各个监测点,边则代表监测点之间的空间关系和环境影响;然后,利用图卷积神经网络对图模型进行特征提取,通过逐层传递节点信息捕捉节点间的相互影响,并引入注意力机制对不同节点的特征加权处理,提升预测性能;最后,使用历史覆冰数据进行监督学习,优化模型参数,确保泛化能力。试验结果表明,该模型在不同天气条件和线路环境下具有较高的预测精度和稳健性,为电力部门及时采取融冰措施提供了有效支持。

关键词: 覆冰预测, 图卷积神经网络, 注意力机制, 架空输电线路, 多源数据融合

Abstract: Aiming at the overhead transmission line ice cover prediction problem, this paper proposes a prediction model based on graph convolutional neural network. Firstly, a graph model containing overhead transmission line topology and environmental factors is constructed by integrating the relative air humidity, wind speed, air temperature, and related data such as conductor surface temperature, conductor temperature, ambient humidity, and conductor tension change, defining the nodes as the monitoring points of the line, and the edges represent the spatial relationship between the monitoring points and the environmental impact supervision. Then, a graph convolutional neural network is used to extract features from the graph model, capture the interactions between nodes by passing node information layer by layer, and introduce an attention mechanism to weight the features of different nodes to improve the prediction performance; finally, supervised learning is performed using historical ice cover data to optimize the model parameters and ensure the generalization ability. The experimental results show that the model has high prediction accuracy and robustness under different weather conditions and line environments, providing effective support for the power sector to take timely ice melting measures.

Key words: ice cover prediction, graph convolutional network, attention mechanism, overhead transmission lines, multi-source data fusion

中图分类号: