测绘通报 ›› 2025, Vol. 0 ›› Issue (6): 136-141.doi: 10.13474/j.cnki.11-2246.2025.0623

• 技术交流 • 上一篇    

激光雷达与云台相机驱动的无人机树障隐患检测技术在配网巡检中的应用

魏洪, 况松陵, 李扬帆, 冯藩, 杨涛, 唐星   

  1. 国网绵阳供电公司, 四川 绵阳 621000
  • 收稿日期:2024-11-05 发布日期:2025-07-04
  • 作者简介:魏洪(1984—),男,硕士,高级工程师,主要研究方向为从事电网设备状态检修研究。E-mail:10073766@qq.com
  • 基金资助:
    国网四川省电力公司科技项目(52190523002)

Application of LiDAR and gimbal camera driven UAV tree barrier hazard detection technology in distribution network inspection

WEI Hong, KUANG Songling, LI Yangfan, FENG Fan, YANG Tao, TANG Xing   

  1. State Grid Mianyang Power Supply Company, Mianyang 621000, China
  • Received:2024-11-05 Published:2025-07-04

摘要: 在电力配网巡检过程中,传统的无人机巡检模式往往存在滞后性,难以及时发现和处理巡检通道中的树障隐患,导致配电线路运行安全性受到影响。为解决这一问题,本文提出了一种融合激光雷达与云台相机的实时隐患检测技术,通过在无人机上搭载激光雷达和高精度摄像头,融合遗传K均值锚框聚类的YOLO模型,实现对巡检通道中树障的实时检测和分析。该系统能够自动识别并定位树障,并通过云台相机对隐患部位进行精准拍摄,生成实时的隐患报告。复杂环境下的测试结果显示,该系统能够大幅提高隐患检测的及时性和准确性,显著缩短了从发现隐患到采取行动的时间。研究指出,本文提出的实时隐患检测技术显著提升了配网巡检的效率和安全性,为电力配网的智能化管理提供了有力支持,具有广泛的应用前景。

关键词: 锚框聚类, 实时隐患检测, 无人机避障, 多传感器融合

Abstract: In the process of electric power distribution network inspection, the traditional UAV inspection mode often has a lag, which makes it difficult to discover and deal with the hidden tree obstacles in the inspection channel in a timely manner, leading to the impact on the operational safety of distribution lines. To solve this problem, this study proposes a real-time hidden danger detection technology that integrates LiDAR and PTZ camera, realizing real-time detection and analysis of tree obstacles in the inspection channel by carrying LiDAR and high-precision camera on the UAV and integrating the YOLO model of genetic K-mean anchor frame clustering. The system can automatically identify and locate tree obstacles, and accurately photograph the hidden parts through the gimbal camera to generate a real-time report on the hidden problems. Through testing in complex environments, the results show that the system is able to significantly improve the timeliness and accuracy of hidden trouble detection and significantly shorten the time from discovery to action. It is concluded that the proposed real-time hidden danger detection technology significantly improves the efficiency and safety of distribution network inspection, provides strong support for the intelligent management of electric power distribution networks, and has a wide range of application prospects.

Key words: anchor box clustering, real-time hazard detection, unmanned aerial vehicle obstacle avoidance, multi-sensor fusion

中图分类号: