测绘通报 ›› 2025, Vol. 0 ›› Issue (8): 89-94.doi: 10.13474/j.cnki.11-2246.2025.0814

• 学术研究 • 上一篇    下一篇

基于加权贝叶斯网络的目标车辆轨迹推演方法

卞玉霞, 朱自杰, 周业, 李心怡   

  1. 成都信息工程大学资源环境学院, 四川 成都 610225
  • 收稿日期:2024-12-19 出版日期:2025-08-25 发布日期:2025-09-02
  • 作者简介:卞玉霞(1987—),女,博士,副教授,主要研究方向为智慧城市建设、视频识别与分析等。E-mail:byx@cuit.edu.cn
  • 基金资助:
    四川省科技厅重点研发项目(2023YFG0299);校级科技创新能力提升计划(KYQN202309)

Target vehicle trajectory deduction method based on weighted Bayesian network

BIAN Yuxia, ZHU Zijie, ZHOU Ye, LI Xinyi   

  1. College of Resources and Environment, Chengdu University of Information Technology, Chengdu 610225, China
  • Received:2024-12-19 Online:2025-08-25 Published:2025-09-02

摘要: 由于现代城市交通环境中路网结构日益复杂且交通流量持续上升,车辆在大范围交通网络内的行驶轨迹变得异常复杂。现有的交通数据采集与分析手段在推演车辆完整行驶轨迹方面面临挑战。为了高度还原车辆真实行驶轨迹,提高各类交通数据的协同程度,本文提出了基于加权贝叶斯网络的目标车辆轨迹推演方法。将道路交通网络的拓扑结构直接映射为贝叶斯网络架构,提取和量化影响驾驶决策的影响因子,运用权重分析方法确定影响因子权重系数,从而构建车辆行驶轨迹推演的加权贝叶斯网络模型。以校园路网为样区进行试验发现,本文方法能更精准地推演和复现目标车辆在大范围交通路网内完整的行驶轨迹,为解决智慧交通建设、路线规划及车辆追踪等问题提供了强有力的理论支持。

关键词: 贝叶斯网络, 影响因子量化, 多因素加权, 交通路网, 轨迹推演

Abstract: In view of the increasingly complex structure of the road network and the continuous increase in traffic flow in the modern urban traffic environment,the trajectory of vehicles in a large transportation network has become extremely complex.The existing traffic data collection and analysis methods face challenges in deducing the complete driving trajectory of vehicles.In order to highly restore the real driving trajectory of vehicles and improve the degree of coordination of various traffic data,this study proposes a target vehicle trajectory deduction method based on weighted Bayesian network.Specifically,the topology of the road traffic network is directly mapped to the Bayesian network architecture,the influencing factors affecting driving decisions are extracted and quantified,and the weight analysis method is used to determine the weight coefficients of the influencing factors,so as to construct a weighted Bayesian network model for vehicle trajectory deduction.Taking the campus road network as the sample area for experiments,the proposed method can more accurately deduce and reproduce the complete driving trajectory of the target vehicle in a wide range of traffic network,which provides strong theoretical support for solving the problems of intelligent transportation construction,route planning and vehicle tracking.

Key words: Bayesian network, quantification of impact factors, multifactor weighting, transportation network, trajectory derivation

中图分类号: