测绘通报 ›› 2025, Vol. 0 ›› Issue (8): 95-99,106.doi: 10.13474/j.cnki.11-2246.2025.0815

• 学术研究 • 上一篇    下一篇

IVYA-SIAM联合优化的多模态人口空间化模型构建及驱动效应分析

王立志1,2, 肖东升1,2,3   

  1. 1. 西南石油大学土木工程与测绘学院, 四川 成都 610500;
    2. 西南石油大学测绘遥感地理信息防灾应急研究中心, 四川 成都 610500;
    3. 石油和化工行业油气田测绘遥感信息技术重点实验室, 四川 成都 610500
  • 收稿日期:2025-04-01 出版日期:2025-08-25 发布日期:2025-09-02
  • 通讯作者: 肖东升。E-mail:xiaodsxds@163.com E-mail:xiaodsxds@163.com
  • 作者简介:王立志(1999—),男,硕士生,主要研究方向为测绘遥感地理信息防灾应急。E-mail:2829744772@qq.com
  • 基金资助:
    四川省区域创新合作项目(23QYCX0053)

Construction of multimodal population spatialization model via IVYA-SIAM joint optimization and its driving effect analysis

WANG Lizhi1,2, XIAO Dongsheng1,2,3   

  1. 1. School of Civil Engineering and Surveying, Southwest Petroleum University, Chengdu 610500, China;
    2. Southwest Petroleum University Surveying and Remote Sensing Geographic Information Disaster Prevention and Emergency Research Center, Chengdu 610500, China;
    3. Oil and Chemical Industry Oil and Gas Field Surveying and Remote Sensing Information Key Laboratory, Chengdu 610500, China
  • Received:2025-04-01 Online:2025-08-25 Published:2025-09-02

摘要: 针对现有人口空间化模型依赖单一算法导致的精度瓶颈与复杂空间异质性解析不足问题,本文提出 “多模态集成-参数自适应-特征增强” 三阶优化框架。首先融合夜间灯光、建筑物轮廓等多源数据,通过RF、XGBoost 与 MLP 堆叠集成次级模型(N-MLP);然后引入常春藤算法(IVYA)动态优化超参数,并设计空间交互增强的双通道注意力机制(SIAM)以强化地理空间依赖解析;最后以成都市为案例,构建 400 m 格网与乡镇/街道双尺度验证体系,结合低空经济需求弹性模型,分析人口分布对无人机物流的驱动效应。试验表明:优化后的 SIAM-IVYA-N-MLP 模型在格网尺度R2达 0.947 9,MAE 与 RMSE 分别降低 14.67%和 3.38%;乡镇/街道尺度 R2 达 0.971 6,主城区人口密度每增加 1%,无人机物流需求增长 1.19%。本文研究为高精度人口空间化及低空经济基础设施布局提供了可操作的技术路径。

关键词: 人口空间化, 常春藤算法, 空间交互-注意力机制, 集成学习, 低空经济

Abstract: Aiming at the precision bottleneck and insufficient spatial heterogeneity analysis in existing models due to single-algorithm dependence,this study proposes a three-tier “multimodal ensemble-parameter adaptation-feature enhancement” optimization framework.First,multi-source data (such as nighttime lighting,building outlines)are integrated to construct a secondary model (N-MLP)via stacking random forest,XGBoost,and MLP.Then,the IVY algorithm (IVYA)is introduced for dynamic hyperparameter optimization,and a spatial interaction-augmented attention mechanism (SIAM)is designed to enhance geographical spatial dependence analysis through parallel attention architectures.Finally,a dual-scale validation system (400 m grid and township/street levels)is established in Chengdu,and the driving effect of population distribution on drone logistics demand is analyzed via a low-altitude economy demand elasticity model.Results show that the optimized SIAM-IVYA-N-MLP model achieves an R2 of 0.947 9 at the grid scale,with MAE and RMSE reduced by 14.67%and 3.38%,respectively.At the township/street scale,the R2 reaches 0.971 6.A 1%increase in main urban population density drives a 1.19%growth in drone logistics demand.This study provides an operational technical pathway for high-precision population spatialization and low-altitude economic infrastructure planning.

Key words: population spatialization, IVY algorithm, spatial interaction-attention mechanism, ensemble learning, low-altitude economy

中图分类号: