测绘通报 ›› 2025, Vol. 0 ›› Issue (10): 30-35.doi: 10.13474/j.cnki.11-2246.2025.1006

• 学术研究 • 上一篇    

探地雷达多属性融合的隧道衬砌多目标检测方法

赵亮1, 唐禄怡1, 刘世鹏2   

  1. 1. 西安建筑科技大学信息与控制工程学院, 陕西 西安 710055;
    2. 西安建筑科技大学机电工程学院, 陕西 西安 710055
  • 收稿日期:2025-03-31 发布日期:2025-10-31
  • 作者简介:赵亮(1981-),男,博士,教授,主要从事模式识别及智能检测系统科研工作。E-mail:zhaoliang@xauat.edu.cn
  • 基金资助:
    国家自然科学基金(51209167;52178393;51578447);西安市科学家+工程师队伍建设项目(2024JH-KGDW-0112);重点项目-实验室重点项目(2025SYS-SYSZD-049)

Ground penetrating radar multi-attribute fusion for multi-target detection of tunnel lining

ZHAO Liang1, TANG Luyi1, LIU Shipeng2   

  1. 1. College of Information and Control Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China;
    2. College of Mechanical and Electrical Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
  • Received:2025-03-31 Published:2025-10-31

摘要: 本文针对探地雷达图像特征复杂、病害检测精度低的问题,提出了一种多属性融合的隧道衬砌病害检测方法。通过提取雷达信号的瞬时振幅、瞬时相位和瞬时频率属性,结合波粒二象性理论设计Wave模块作为骨干网络,构建多模态特征融合框架。该方法采用金字塔结构分层提取底层和高层语义特征,并引入轻量级MLP架构优化网络动态性与计算效率。试验结果表明,融合瞬时属性与Wave模块的模型在空洞、不密实和钢筋网检测任务中平均精度均值(mAP)达到91.7%,较基线模型YOLOv8提升3.8%。消融试验与对比分析验证了多属性融合策略及Wave模块在增强特征表达能力方面的有效性,为隧道衬砌病害的精准无损检测提供了新思路。

关键词: 多属性融合, 探地雷达, Wave模块, 金字塔架构, 无损检测

Abstract: This paper addresses the issues of complex ground penetrating radar (GPR)image features and low accuracy in defect detection by proposing a multi-attribute fusion method for tunnel lining defect detection.By extracting instantaneous amplitude, instantaneous phase, and instantaneous frequency attributes of radar signals, combined with wave-particle duality theory to design a Wave module as the backbone network, a multi-modal feature fusion framework is constructed.The method employs a pyramid structure to extract low-level and high-level semantic features in layers, and introduces a lightweight MLP architecture to optimize network dynamics and computational efficiency.Experimental results demonstrate that the model fusing instantaneous attributes with the Wave module achieves a mean average precision (mAP)of 91.7%in cavity, loose, and steel detection tasks, an improvement of 3.8%compared to the baseline YOLOv8 model.Ablation experiments and comparative analysis verify the effectiveness of the multi-attribute fusion strategy and the Wave module in enhancing feature expression capability, providing a new approach for precise non-destructive detection of tunnel lining defects.

Key words: multi-attribute fusion, GPR, Wave module, pyramid architecture, non-destructive defection

中图分类号: