测绘通报 ›› 2025, Vol. 0 ›› Issue (5): 66-73.doi: 10.13474/j.cnki.11-2246.2025.0511

• 学术研究 • 上一篇    

路基病害雷达图像多视图融合识别方法

陈登峰1, 何拓航1, 杨小燕1, 刘世鹏2, 孟屯良3   

  1. 1. 西安建筑科技大学建筑设备科学与工程学院, 陕西 西安 710055;
    2. 西安建筑科技大学机电工程学院, 陕西 西安 710055;
    3. 西安建筑科大工程技术有限公司, 陕西 西安 710055
  • 收稿日期:2024-10-09 发布日期:2025-06-05
  • 作者简介:陈登峰(1976—),男,博士,副教授,主要从事结构健康检测方面的研究。E-mail:chdengf@163.com
  • 基金资助:
    陕西省自然科学基金面上项目(2024JC-YBMS-286);西安市科技计划(2023JH-GXRC-0216;2024JH-KGDW-0112)

Multi-view fusion recognition method for subgrade disease radar images

CHEN Dengfeng1, HE Tuohang1, YANG Xiaoyan1, LIU Shipeng2, MENG Tunliang3   

  1. 1. School of Building Services Science and Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China;
    2. School of Mechanical and Electrical Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China;
    3. Xi'an Construction Technology University Engineering Technology Co., Ltd., Xi'an 710055, China
  • Received:2024-10-09 Published:2025-06-05

摘要: 三维探地雷达(GPR)技术是道路隐性病害检测的重要手段,利用智能辨识算法分析GPR数据能提升病害检测效率,然而现有算法未充分利用GPR多视图信息,导致辨识准确率较低。为此,本文提出了一种GPR多视图融合的路基病害识别模型。该模型采用双通道并行结构,利用MobileViT网络分别从GPR的B-scan和C-scan图像中提取高维特征,挖掘双视图的互补信息以进行特征学习。为有效整合双视图信息,提出了特征交错加权融合方法,将提取到的双视图高维特征进行近邻排列,并通过动态优化特征通道的权重分配,突出关键特征并抑制无关信息。试验结果表明,该网络模型对测试集的准确率达到90.5%;此外,在高斯白噪声干扰下,相较于基线模型,模型总体退化指数降低了13.51%,展示出优越的稳健性。

关键词: 路基病害, 深度学习, 探地雷达, 多视图融合

Abstract: Three-dimensional ground penetrating radar (GPR) technology is a critical method for detecting latent road defects. Analyzing GPR data with intelligent defect recognition algorithms can enhance detection efficiency. However, existing algorithms have not fully utilized the multi-view information provided by GPR, resulting in lower recognition accuracy. To address this issue, this paper proposes a GPR multi-view fusion model for subgrade defect identification. The model employs a dual-channel parallel structure, utilizing the MobileViT network to extract high-dimensional features from both B-scan and C-scan images of GPR data, thereby tapping into the complementary information inherent in the dual views for feature learning. To effectively integrate information from these dual views, a feature interlaced weighted fusion method is proposed, arranging the high-dimensional features extracted from the dual views in proximity and dynamically optimizing the weight allocation of feature channels to highlight key features while suppressing irrelevant information. Experimental results demonstrate that the network model achieves an accuracy rate of 90.5% on the test set. Moreover, under Gaussian white noise interference, compared with baseline models, the overall degradation index of the model decreases by 13.51%, showcasing superior robustness.

Key words: disease detection, deep learning, ground penetrating radar, multi-view fusion

中图分类号: