[1] SHAH U, KHAWAD R, KRISHNA K M. Detecting, localizing, and recognizing trees with a monocular MAV:towards preventing deforestation[C]//Proceedings of 2017 IEEE International Conference on Robotics and Automation. Singapore:IEEE, 2017. [2] DALAL N, TRIGGS B. Histograms of oriented gradients for human detection[C]//Proceedings of 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. San Diego:IEEE, 2005. [3] DOLLÁR P, TU Zhuowen, PERONA P, et al. Integral channel features[C]//Proceedings of the British Machine Vision Conference. London:BMVA Press, 2009. [4] FELZENSZWALB P F, GIRSHICK R B, MCALLESTER D A. Cascade object detection with deformable part models[C]//Proceedings of 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. San Francisco:IEEE, 2010. [5] KRIZHEVSKY A, SUTSKEVER I, HINTON G E. Image Net classification with deep convolutional neural networks[C]//Proceedings of the 25th International Conference on Neural Information Processing Systems. Lake Tahoe:Curran Associates Inc., 2012. [6] UIJLINGS J R R, VAN DE SANDE K E A, GEVERS T, et al. Selective search for object recognition[J]. International Journal of Computer Vision, 2013, 104(2):154-171. [7] GIRSHICK R, DONAHUE J, DARRELL T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C]//Proceedings of 2014 IEEE Conference on Computer Vision and Pattern Recognition. Columbus:IEEE, 2014. [8] HE Kaiming, ZHANG Xiangyu, REN Shaoqing, et al. Spatial pyramid pooling in deep convolutional networks for visual recognition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 37(9):1904-1916. [9] ERHAN D, SZEGEDY C, TOSHEV A, et al. Scalable object detection using deep neural networks[C]//Proceedings of 2014 IEEE Conference on Computer Vision and Pattern Recognition. Columbus:IEEE, 2014. [10] PINHEIRO P O, COLLOBERT R, DOLLÁR P. Learning to segment object candidates[C]//Proceedings of the 28th International Conference on Neural Information Processing Systems. Montreal:ACM, 2015. [11] REN Shaoqing, HE Kaiming, GIRSHICK R, et al. Faster R-CNN:towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6):1137-1149. [12] LIU Wei, ANGUELOV D, ERHAN D, et al. SSD:single shot MultiBox detector[C]//Proceedings of the 14th European Conference Computer Vision. Amsterdam:Springer, 2016. [13] REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once:unified, real-time object detection[C]//Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas:IEEE, 2016. [14] ZHANG Shifeng, WEN Longyin, BIAN Xiao, et al. Occlusion-aware R-CNN:detecting pedestrians in a crowd[C]//Proceedings of the European Conference on Computer Vision (ECCV). Munich:[s.n.],2018:637-653. [15] HUANG J, RATHOD V, SUN Chen, et al. Speed/accuracy trade-offs for modern convolutional object detectors[C]//Proceedings of 2017 IEEE Conference on Computer Vision and Pattern Recognition. Honolulu:IEEE, 2017. [16] ZEILER M D, FERGUS R. Visualizing and understanding convolutional networks[C]//Proceedings of the 13th European Conference on Computer Vision. Zurich:Springer, 2014. [17] HE Kaiming, ZHANG Xiangyu, REN Shaoqing, et al. Deep residual learning for image recognition[C]//Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas:IEEE, 2016. [18] RUSSAKOVSKY O, DENG Jia, SU Hao, et al. ImageNet large scale visual recognition challenge[J]. International Journal of Computer Vision, 2015, 115(3):211-252. [19] ZHANG Liliang, LIN Liang, LIANG Xiaodan, et al. Is faster R-CNN doing well for pedestrian detection?[C]//Proceedings of the 14th European Conference on Computer Vision. Amsterdam:Springer, 2016. [20] ZHOU Chunluan, YUAN Junsong. Learning to integrate occlusion-specific detectors for heavily occluded pedestrian detection[C]//Proceedings of the 13th Asian Conference on Computer Vision. Taipei, Taiwan, China:Springer, 2017. [21] OUYANG Wanli, ZHOU Hui, LI Hongsheng, et al. Jointly learning deep features, deformable parts, occlusion and classification for pedestrian detection[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2018, 40(8):1874-1887. [22] CHOROWSKI J, BAHDANAU D, SERDYUK D, et al. Attention-based models for speech recognition[J]. Computer Science, 2015, 10(4):429-439. [23] DOLLAR P, WOJEK C, SCHIELE B, et al. Pedestrian detection:an evaluation of the state of the art[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2012, 34(4):743-761. [24] GIRSHICK R. Fast R-CNN[C]//Proceedings of 2015 IEEE International Conference on Computer Vision. Santiago:IEEE, 2015. |