[1] 王冬利, 张安兵, 赵安周, 等. 非监督分类的冬小麦种植信息提取模型[J]. 测绘通报,2019(8):68-71. [2] NITZE I, SCHULTHESS U, ASCHE H. Comparison of machine learning algorithms random forest, artificial neural network and support vector machine to maximum likelihood for supervised crop type classification[C]//Proceedings of the 4th GEOBIA. Rio de Janeiro:[s.n.], 2012. [3] SONOBE R, TANI H, WANG X F, et al. Random forest classification of crop type using multi-temporal TerraSAR-X dual-polarimetric data[J]. Remote Sensing Letters, 2014, 5(2):157-164. [4] TATSUMI K, YAMASHIKI Y, TORRES M A C, et al. Crop classification of upland fields using random forest of time-series Landsat 7 ETM+ data[J]. Computers and Electronics in Agriculture, 2015, 115:171-179. [5] ZHONG L, HU L, ZHOU H. Deep learning based multi-temporal crop classification[J]. Remote Sensing of Environment, 2019, 221:430-443. [6] SUN Z H, DI L P, FANG H. Using long short-term memory recurrent neural network in land cover classification on Landsat and Cropland data layer time series[J]. International Journal of Remote Sensing, 2019, 40(2):593-614. [7] KUSSUL N, LAVRENIUK M, SKAKUN S, et al. Deep learning classification of land cover and crop types using remote sensing data[J]. IEEE Geoscience and Remote Sensing Letters, 2017, 14(5):778-782. [8] 龚健雅, 季顺平. 摄影测量与深度学习[J]. 测绘学报,2018,47(6):693-704. [9] PELLETIER C, WEBB G I, PETITJEAN F. Temporal convolutional neural network for the classification of satellite image time series[J]. Remote Sensing, 2019, 11(5):523. [10] NDIKUMANA E, MINH D H T, BAGHDADI N, et al. Deep recurrent neural network for agricultural classification using multitemporal SAR Sentinel-1 for Camargue, France[J]. Remote Sensing, 2018, 10(8):1217. [11] MOU L, GHAMISI P, ZHU X X. Deep recurrent neural networks for hyperspectral image classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55(7):3639-3655. [12] DEY R, SALEM F M. Gate-variants of gated recurrent unit (GRU) neural networks[C]//Proceedings of the 60th IEEE International Midwest Symposium on Circuits and Systems (MWSCAS). Boston:IEEE, 2017:1597-1600. [13] PAL M. Random forest classifier for remote sensing classifi-cation[J]. International Journal of Remote Sensing, 2005, 26(1):217-222. [14] SUKAWATTANAVIJIT C, CHEN J, ZHANG H S. GA-SVM algorithm for improving land-cover classification using SAR and optical remote sensing data[J]. IEEE Geoscience and Remote Sensing Letters, 2017, 14(3):284-288. [15] VAN DER LINDEN S, RABE A, HELD M, et al. The EnMAP-Box:a toolbox and application programming interface for EnMAP data processing[J]. Remote Sensing, 2015, 7(9):11249-11266. [16] FAN Dazhao, DONG Yang, ZHANG Yongsheng. Satellite image matching method based on deep convolutional neural network[J]. Journal of Geodesy and Geoinformation Science, 2019, 2(2):90-100. |