[1] 徐慧敏,齐华,南柯,等.结合nDSM的高分辨率遥感影像深度学习分类方法[J].测绘通报,2019(8):63-67. [2] 苏健民,杨岚心,景维鹏.基于U-Net的高分辨率遥感图像语义分割方法[J].计算机工程与应用,2019,55(7):212-218. [3] LONG J, SHELHAMER E, DARRELL T. Fully convolution-al networks for semantic segmentation[C]//Proceedings of 2015 rence on Computer Vision and Pattern Recognition. New York:IEEE Computer Society,2015:3431-3440. [4] 李欣,唐文莉,杨博.利用深度残差网络的高分遥感影像语义分割[J].应用科学学报, 2019, 37(2):136-144. [5] RONNEBERGER O, FISCHER P, BROX T. U-net:Convolu-tional networks for biomedical imagesegmentation[M].[S.l.]:Springer International Publishing,2015:234-241. [6] BADRINARAYANAN V, KENDALL A, CIPOLLA R.SegNet:a deep convolutional encoder-decoder architecture for image segmentation[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2017,39(12):2481-2495. [7] CHEN L C, PAPANDREOU G, KOKKINOS I, et al.Semantic image segmentation with deep convolutional nets and fully connected CRFs[J].Computer Science,2014(4):357-361. [8] CHEN L C, PAPANDREOU G, KOKKINOS I, et al. DeepLab:semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs[J].IEEE Transactions on Pattern Analysis & Machine Intelligence,2016,40(4):834-848. [9] CHEN L C, ZHU Y, PAPANDREOU G, et al.Encoder-decoder with atrous separable convolution for semantic image segmentation[C]//Proceedings of 2018 European Conference on Computer Vision.[S.l.]:Springer International Publishing,2018:801-818. [10] HE K, ZHANG X, REN S, et al.Identity mappings in deep residual networks[C]//European conference on computer vision.Switzerland:Springer,2016:630-645. [11] 陈天华,郑司群,于峻川.采用改进DeepLab网络的遥感图像分割[J].测控技术,2018,37(11):40-45. [12] WANG P, CHEN P, YUAN Y, et al. Understanding convolution for semantic segmentation[C]//Proceedings of 2018 IEEE Winter Conference on Applications of Computer Vision (WACV).New York:IEEE,2018:1451-1460. [13] LIN T Y, GOYAL P, GIRSHICK R, et al. Focal loss for dense object detection[J].IEEE Transactions on Pattern Analysis & Machine Intelligence,2017(99):2999-3007. [14] TONG W, PI-LIAN H. The classification algorithm based on the cross entropy rule and new activetion function in fuzzy neural network[C]//Proceedings of 2005 International Conference on Machine Learning and Cybernetics.New York:IEEE, 2005,8:4631-4635. |