[1] 石丽丽. 京西石灰石采石场废弃地植被恢复效果及其评价研究[D]. 北京:北京林业大学, 2014:1-2. [2] 宋百敏. 北京西山废弃采石场生态恢复研究:自然恢复的过程、特征与机制[D]. 济南:山东大学, 2008:10-17. [3] 张玉虎, 于长青, 宋百敏, 等. 快速监测评估废弃采石场生态恢复的研究[J]. 生态与农村环境学报, 2007, 23(3):36-40. [4] 赵浩腾. 基于Landsat长时间遥感影像的采石场面积监测与分析[D]. 北京:中国科学院大学(中国科学院遥感与数字地球研究所), 2018:9-15. [5] 尹红, 杨广斌, 安裕伦. 贵阳市采石场遥感动态监测研究[J]. 环保科技, 2007, 13(1):6-10. [6] 马得利, 孙永康, 杨建英, 等. 基于无人机遥感技术的废弃采石场立地条件类型划分[J]. 北京林业大学学报, 2018, 40(9):90-97. [7] 王耿明, 朱俊凤, 陈捷, 等. 采石场绿色矿山建设无人机动态监测:以广州市太珍石场为例[J]. 地矿测绘, 2019, 35(3):29-30, 51. [8] SHELHAMER E, LONG J, DARRELL T. Fully convolu-tional networks for semantic segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(4):640-651. [9] ZHAO H S, ZHANG Y, LIU S, et al. PSANet:point-wise spatial attention network for scene parsing[M]//SOTA R Y. Computer Vision. Cham:Springer International Publishing, 2018:270-286. [10] ROMERA E,ÁLVAREZ J M, BERGASA L M, et al. ERFNet:efficient residual factorized ConvNet for real-time semantic segmentation[J]. IEEE Transactions on Intelligent Transportation Systems, 2018, 19(1):263-272. [11] FU J, LIU J, TIAN H, et al. Dual attention network for scene segmentation[C]//Proceedings of 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Long Beach:IEEE, 2019:3141-3149. [12] CHEN L C, PAPANDREOU G, KOKKINOS I, et al. DeepLab:semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2018, 40(4):834-848. [13] YU C Q WANG J B, PENG C, et al. BiSeNet:bilateral segmentation network for real-time semantic segmentation[M]//SOTA R Y. Computer Vision. Cham:Springer International Publishing, 2018:334-349. [14] VASWANI A, SHAZEER N, PARMAR N,et al. Attention is all you need[C]//Proceedings of 2017 International Conference on Neural Information Processing Systems.[S.l.]:Computation and Language, 2017:6000-6010. [15] HE K, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]//Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Las Vegas:IEEE, 2016:770-778. [16] ZHAO H S, SHI J P, QI X J, et al. Pyramid scene parsing network[C]//Proceedings of 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).Honolulu:IEEE, 2017:6230-6239. [17] PENG C L, ZHANG K N, MA Y, et al. Cross fusion net:a fast semantic segmentation network for small-scale semantic information capturing in aerial scenes[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021,3062(99):1-13. [18] NI H, NIU X N. Agglomerative oversegmentation using dual similarity and entropy rate[J]. Pattern Recognition, 2019, 93:324-336. [19] LI X T, YOU A S, ZHU Z, et al. Semantic flow for fast and accurate scene parsing[M]//Computer Vision. Cham:Springer International Publishing, 2020:775-793. [20] YU C Q, GAO C X, WANG J B, et al. BiSeNet V2:bilateral network with guided aggregation for real-time semantic segmentation[J]. International Journal of Computer Vision,2021:01515. |