[1] 张良培,武辰.多时相遥感影像变化检测的现状与展望[J].测绘学报,2017,46(10):1447-1459. [2] 眭海刚,冯文卿,李文卓,等.多时相遥感影像变化检测方法综述[J].武汉大学学报(信息科学版),2018,43(12):1885-1898. [3] 杨进一,徐伟铭,王成军,等.基于超像元词包特征和主动学习的高分遥感影像变化检测[J].地球信息科学学报,2019,21(10):1594-1607. [4] HUANG Z,JIA X P,GE L L.Sampling approaches for one-pass land-use/land-cover change mapping[J].International Journal of Remote Sensing,2010,31(6):1543-1554. [5] 于冰,王继燕,苏勇,等.基于像元转换的土地覆盖变化监测方法——以北京市区县为例[J].国土资源遥感,2018,30(3):60-67. [6] 罗星,徐伟铭,王佳.基于对象BOW特征的高分辨率遥感影像变化检测方法[J].地球信息科学学报,2018,20(8): 1150-1159. [7] 朱红春,黄伟,刘海英,等.基于KL散度的面向对象遥感变化检测[J].国土资源遥感,2017,29(2):46-52. [8] 赖正文,夏小云.像素级和对象级高分辨率遥感图像变化检测分析[J].测绘通报,2021(2):59-63. [9] 涂继辉,眭海刚,冯文卿,等.利用词袋模型检测建筑物顶面损毁区域[J].武汉大学学报(信息科学版),2018,43(5):691-696. [10] ZHAO B,ZHONG Y F,ZHANG L P.A spectral-structural bag-of-features scene classifier for very high spatial resolution remote sensing imagery[J].ISPRS Journal of Photogrammetry & Remote Sensing,2016,116:73-85. [11] ZHU Q Q,ZHONG Y F,ZHAO B,et al.Bag-of-visual-words scene classifier with local and global features for high spatial resolution remote sensing imagery[J].IEEE Geoscience and Remote Sensing Letters,2016,13(6):747-751. [12] WU C,ZHANG L F,ZHANG L P.A scene change detection framework for multi-temporal very high resolution remote sensing images[J].Signal Processing,2016,124:184-197. [13] WU C,ZHANG L P,DU B.Kernel slow feature analysis for scene change detection[J].IEEE Transactions on Geoscience and Remote Sensing,2017,55(4):2367-2384. [14] 胡屹群,周绍光,岳顺,等.利用视觉词袋模型和颜色直方图进行遥感影像检索[J].测绘通报,2017(1):53-57. [15] 周宇谷,王平,高颖慧.基于视觉词袋模型的遥感图像分类方法[J].重庆理工大学学报(自然科学),2015,29(5):71-77. [16] GONG C,LI Z P,YAO X W,et al.Remote sensing image scene classification using bag of convolutional features[J].IEEE Geoscience & Remote Sensing Letters,2017,14(10):1735-1739. [17] 马彩虹,关琳琳,陈甫,等.基于内容的遥感图像变化信息检索概念模型设计[J].遥感技术与应用,2020,35(3):685-693. [18] 张立福,王飒,刘华亮,等.从光谱到时谱——遥感时间序列变化检测研究进展[J].武汉大学学报(信息科学版),2021,46(4): 451-468. [19] KRIZHEVSKY A,SUTSKEVER I,HINTON G E.Imagenet classification with deep convolutional neural networks[C]//Proceedings of the 26th Annual Conference on Neural Information Processing Systems.Red Hook: Curran Associates,Inc.,2012:1106-1114. [20] SIMONYAN K,ZISSERMAN A.Very deep convolutional networks for large-scale image recognition[C]// Proceedings of the 3rd International Conference on Learning Representations.San Diego: Computational and Biological Learning Society,2015. |