[1] ZHAO Jixiang,LIU Shanwei,WAN Jianhua,et al. Change detection method of high resolution remote sensing image based on D-S evidence theory feature fusion [J]. IEEE Access,2021,9: 4673-4687. [2] GENG J,MA X,ZHOU X,et al. Saliency-guided deep neural networks for SAR image change detection [J]. IEEE Transactions on Geoscience and Remote Sensing,2019,57(10): 7365-7377. [3] LIU R,WANG R,HUANG J,et al. Change detection in SAR images using multiobjective optimization and ensemble strategy [J]. IEEE Geoscience and Remote Sensing Letters,2021,18: 1585-1589. [4] ZHENG Yaoguo,ZHANG Xiangrong,HOU Biao,et al. Using combined difference image and k-means clustering for SAR image change detection [J]. IEEE Geoscience and Remote Sensing Letters,2014,11(3): 691-695. [5] LEE J S. Digital image enhancement and noise filtering by use of local statistics[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,1980,2(2): 165-168. [6] KUAN D T,SAWCHUK A A,STRAND T C,et al. Adaptive noise smoothing filter for images with signal-dependent noise[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,1985,7(2): 165-177. [7] LIU Luyang,JIA Zhenhong,YANG Jie,et al. SAR image change detection based on mathematical morphology and the k-means clustering algorithm [J]. IEEE Access,2019,7: 43970-43978. [8] BOVOLO F,BRUZZONE L. A detail-preserving scale-driven approach to change detection in multitemporal SAR images [J]. IEEE Transactions on Geoscience and Remote Sensing,2005,43(12): 2963-2972. [9] INGLADA J,MERCIER G. A new statistical similarity measure for change detection in multitemporal SAR images and its extension to multiscale change analysis[J]. IEEE Transactions on Geoscience and Remote Sensing,2007,45(5): 1432-1445. [10] LI H,GONG M,WANG Q,et al. A multiobjective fuzzy clustering method for change detection in SAR images [J]. Applied Soft Computing,2016,46: 767-777. [11] LI Yangyang,PENG Cheng,CHEN Yanqiao,et al. A deep learning method for change detection in synthetic aperture radar images [J]. IEEE Transactions on Geoscience and Remote Sensing,2019,57(8): 5751-5763. [12] ZHAN Yang,FU Kun,YAN Menglong,et al. Change detection based on deep siamese convolutional network for optical aerial images[J]. IEEE Geoscience and Remote Sensing Letters,2017,14(10): 1845-1849. [13] GAO Feng,WANG Xiao,GAO Yunhao,et al. Sea ice change detection in SAR images based on convolutional-wavelet neural networks [J]. IEEE Geoscience and Remote Sensing Letters,2019,16(8): 1240-1244. [14] LIU Tao,LI Ying,CAO Ying,et al. Change detection in multitemporal synthetic aperture radar images using dual-channel convolutional neural network [J]. Journal of Applied Remote Sensing,2017,11(4):1. [15] HU J,SHEN L,ALBANIE S,et al. Squeeze-and-excitation networks[J]. IEEE Trans Pattern Anal Mach Intell,2020,42(8): 2011-2023. [16] IANDOLA F N,HAN Song,MOSKEWICZ M W,et al. SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and <0.5MB model size[EB/OL]. [2023-02-20]. https://arxiv.org/abs/1602.07360. [17] GOFERMAN S,ZELNIK-MANOR L,TAL A. Context-aware saliency detection [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2010,34(10):1915-1926. [18] LIU Fang,JIAO Licheng,TANG Xu,et al. Local restricted convolutional neural network for change detection in polarimetric SAR images[J]. IEEE Transactions on Neural Networks and Learning Systems,2019,30(3): 818-833. [19] OTSU N. A threshold selection method from gray level histograms [J]. IEEE Transactions on Systems,Man,and Cybernetics,1979,9(1): 62-66. [20] GONG Maoguo,ZHAO Jiaojiao,LIU Jia,et al. Change detection in synthetic aperture radar images based on deep neural networks[J]. IEEE Transactions on Neural Networks and Learning Systems,2016,27(1): 125-138. [21] HARALICK R M,SHANMUGAM K S,DINSTEIN I H. Textural features for image classification [J]. IEEE Transactions on Systems,Man and Cybernetics,1973,3(6): 610-621. [22] MOSER G,SERPICO S B. Generalized minimum-error thresholding for unsupervised change detection from SAR amplitude imagery [C]//Proceedings of 2005 IEEE International Geoscience and Remote Sensing Symposium. Korea:IEEE,2005. [23] GAO Feng,DONG Junyu,LI Bo,et al. Change detection from synthetic aperture radar images based on neighborhood-based ratio and extreme learning machine [J]. Journal of Applied Remote Sensing,2016,10(4):046019. [24] GAO Feng,DONG Junyu,LI Bo,et al. Automatic change detection in synthetic aperture radar images based on PCANet [J]. IEEE Geoscience and Remote Sensing Letters,2016,13(12): 1792-1796. [25] QU Xiaofan,GAO Feng,DONG Junyu,et al. Change detection in synthetic aperture radar images using a dual-domain network[J]. IEEE Geoscience and Remote Sensing Letters,2021,19:4012405. [26] GAO Yunhao,GAO Feng,DONG Junyu,et al. SAR image change detection based on multiscale capsule network[J].IEEE Geoscience and Remote Sensing Letters,2020,18(3):484-488. |