[1] BAI Zechao,WANG Yanping,BALZ T.Beijing land subsidence revealed using PS-InSAR with long time series TerraSAR-X SAR data[J].Remote Sensing,2022,14(11):2529-2529. [2] DONG Jie,LAI Shangjing,WANG Nan,et al.Multi-scale deformation monitoring with Sentinel-1 InSAR analyses along the Middle Route of the South-North Water Diversion Project in China[J].International Journal of Applied Earth Observations and Geoinformation,2021,100:102324. [3] XIONG Siting,WANG Chisheng,QIN Xiaoqiong,et al.Time-series analysis on persistent scatter-interferometric synthetic aperture radar(PS-InSAR) derived displacements of the Hong Kong-Zhuhai-Macao Bridge (HZMB) from Sentinel-1A observations[J].Remote Sensing,2021,13(4):546. [4] ZHAO Yizhan,ZHOU Lü,QIN Jie,et al.Analysis of land subsidence change in Wuhan based on sentinel-1A[J].IOP Conference Series:Earth and Environmental Science,2022,1087(1):1-16. [5] HUANG Qihuan,CROSETTO M,MONSERRAT O,et al.Displacement monitoring and modelling of a high-speed railway bridge using C-band Sentinel-1 data[J].ISPRS Journal of Photogrammetry and Remote Sensing,2017,128:204-211. [6] TAN S.Validation of hyperbolic method for settlement in clays with vertical drains[J].Soils and Foundations,1995,35(1):101-113. [7] 陈卫雄.基于时间序列模型的青藏铁路路基形变预测[J].科学技术与工程,2021,21(35):15203-15208. [8] 张献州,夏晨翕,陈霄,等.IGM? FM串联模型在高铁路基沉降预测中的应用[J].重庆交通大学学报(自然科学版),2020,39(11):99-108. [9] 魏冠军,梁斌,戴嵩,等.一种优化组合模型及其在高铁路基冻胀形变预测的应用[J].科学技术与工程,2022,22(19):8459-8466. [10] 靳鹏伟,何永红,陈青海.马尔可夫残差修正模型的高铁路基形变预测[J].测绘科学,2017,42(7):84-88. [11] 张孟喜,李钢,冯建龙,等.双连拱隧道围岩形变有限元与BP神经网络耦合分析[J].岩土力学,2008,29(5):1243-1248. [12] BAO Xin,ZHANG Rui,SHAMA Age,et al.Ground deformation pattern analysis and evolution prediction of Shanghai Pudong International Airport based on PSI long time deries observations[J].Remote Sensing,2022,14(3):610. [13] 刘文豪,黎曦,胡伍生.基于神经网络和双曲线混合模型的高速公路沉降预测[J].东南大学学报(自然科学版),2013,43(S2):380-383. [14] LI Hailin,ZHAO Zhizhou,DU Xue.Research and application of deformation prediction model for deep foundation pit based on LSTM[J].Wireless Communications and Mobile Computing,2022,2022:1-20. [15] 李莉,杜丽霞,张子柯.基于多变量LSTM神经网络的澳大利亚大火预测研究[J].电子科技大学学报,2021,50(2):311-316. [16] 闫佰忠,孙剑,王昕洲,等.基于多变量LSTM神经网络的地下水水位预测[J].吉林大学学报(地球科学版),2020,50(1):208-216. [17] 谭瀛,马刚,徐建华,等.基于多变量时间序列和LSTM网络的面板缝形变预测[J].人民长江,2022,53(10):198-204. [18] 刘媛媛,张丽,李磊,等.基于多变量LSTM神经网络模型的风暴潮临近预报[J].海洋通报,2020,39(6):689-694. [19] AKIMA H.A new method of interpolation and smooth curve fitting based on local procedures[J].Journal of the ACM,1970,17(4):589-602. [20] YANG Beibei,YIN Kunlong,LACASSE S,et al.Time series analysis and long short-term memory neural network to predict landslide displacement[J].Landslides,2019,16(4):677-694. [21] HOCHREITER S,SCHMIDHUBER J.Long short-term memory[J].Neural Computation,1997,9(8):1735-1780. |