[1] SHEN Bo,ZHANG Wenyu,QI Dapeng,et al. Wireless multimedia sensor network based subway tunnel crack detection method[J]. International Journal of Distributed Sensor Networks,2015,11(6):1-10. [2] 李健超,张翠兵,柴雪松,等. 基于图像识别技术的隧道衬砌裂缝检测系统研究[J]. 铁道建筑,2018,58(1):20-24. [3] HUANG Hongwei,SUN Yan,XUE Yadong,et al. Inspection equipment study for subway tunnel defects by grey-scale image processing[J]. Advanced Engineering Informatics,2017,32(C):188-201. [4] WANG Quanlei,ZHANG Ning,JIANG Kun,et al. Tunnel lining crack recognition based on improved multiscale retinex and sobel edge detection[J]. Mathematical Problems in Engineering,2021(41): 9969464. [5] 张振海,尹晓珍,王阳萍,等. 基于特征分析的图像式地铁隧道裂缝检测方法研究[J]. 铁道科学与工程学报,2019,16(11):2791-2800. [6] REZAIE A,ACHANTA R,GODIO M,et al. Comparison of crack segmentation using digital image correlation measurements and deep learning[J]. Construction and Building Materials,2020,261:120474. [7] AN Qing,CHEN Xijiang,WANG Haojun,et al. Segmentation of concrete cracks by using fractal dimension and UHK-net[J]. Fractal and Fractional,2022,6(2):95. [8] 方广欣. 基于YOLOv5的地铁隧道裂缝检测技术研究[D]. 合肥:合肥工业大学,2021. [9] 薛亚东,高健,李宜城,等. 基于深度学习的地铁隧道衬砌病害检测模型优化[J]. 湖南大学学报(自然科学版),2020,47(7):137-146. [10] 折昌美. 地铁隧道复杂裂缝病害的图像识别算法研究[D].北京:北京交通大学,2019. [11] DUNG C V,ANH L D. Autonomous concrete crack detection using deep fully convolutional neural network[J]. Automation in Construction,2019,99:52-58. [12] LIU Zhenqing,CAO Yiwen,WANG Yize,et al. Computer vision-based concrete crack detection using U-net fully convolutional networks[J]. Automation in Construction,2019,104:129-139. [13] 王耀东,余祖俊,白彪,等. 基于图像处理的地铁隧道裂缝识别算法研究[J]. 仪器仪表学报,2014,35(7):1489-1496. [14] 陈占龙,李双江,徐永洋,等. 高分影像密集建筑物Correg-YOLOv3检测方法[J]. 测绘学报,2022,51(12):2531-2540. [15] REN Yupeng,HUANG Jisheng,HONG Zhiyou,et al. Image-based concrete crack detection in tunnels using deep fully convolutional networks[J]. Construction and Building Materials,2020,234:117367. [16] XU Yingying,LI Dawei,XIE Qian,et al. Automatic defect detection and segmentation of tunnel surface using modified Mask R-CNN[J]. Measurement,2021,178:109316. [17] XUE Yadong,LI Yicheng. A fast detection method via region-based fully convolutional neural networks for shield tunnel lining defects[J]. Computer-Aided Civil and Infrastructure Engineering,2018,33(8):638-654. [18] 李梓豪,唐超. 基于高清工业相机的盾构隧道裂缝智能识别算法分析[J]. 测绘通报,2021(8):83-87. [19] LI Shengyuan,ZHAO Xuefeng,ZHOU Guangyi. Automatic pixel-level multiple damage detection of concrete structure using fully convolutional network[J]. Computer-Aided Civil and Infrastructure Engineering,2019,34(7):616-634. |