[1] ALLEY R B,CLARK P U,HUYBRECHTS P,et al.Ice-sheet and sea-level changes[J].Science,2005,310(5747): 456-460. [2] TRUSEL L D,DAS S B,OSMAN M B,et al.Nonlinear rise in Greenland runoff in response to post-industrial Arctic warming[J].Nature,2018,564(7734): 104-108. [3] SHEPHERD A,IVINS E,RIGNOT E,et al.Mass balance of the Greenland Ice Sheet from 1992 to 2018[J].Nature,2020,579(7798): 233-239. [4] 王泽民,周春霞,张保军,等.南极冰架变化监测研究进展[J].冰川冻土,2022,44(3): 830-842. [5] SAURABH K,TEJPAL S.Development of glacier mapping in Indian Himalaya: a review of approaches [J].International Journal of Remote Sensing,2019,40(17): 6607-6634. [6] HVIDBERG C S,GRINSTED A,DAHL-JENSEN D,et al.Surface velocity of the Northeast Greenland Ice Stream (NEGIS): assessment of interior velocities derived from satellite data by GPS[J].The Cryosphere,2020,14(10): 3487-3502. [7] 陈军,柯长青.南极冰盖表面冰流速研究综述[J].极地研究,2015,27(1): 115-124. [8] 赵现仁,庞蕾,马永,等.基于GPS实测数据和PS-InSAR技术的北极Pedersenbreen冰川表面运动特征分析[J].海洋通报,2020,39(3): 381-389. [9] OUCHI K.Recent trend and advance of synthetic aperture radar with selected topics [J].Remote Sensing,2013,5(2): 716-807. [10] 王群,范景辉,周伟,等.DEM辅助偏移量跟踪技术的山地冰川运动监测研究[J].国土资源遥感,2018,30(3): 167-173. [11] STROZZI T,LUCKMAN A,MURRAY T,et al.Glacier motion estimation using SAR offset-tracking procedures[J].IEEE Transactions on Geoscience and Remote Sensing,2002,40(11): 2384-2391. [12] LUCKMAN A,QUINCEY D,BEVAN S.The potential of satellite radar interferometry and feature tracking for monitoring flow rates of Himalayan glaciers[J].Remote Sensing of Environment,2007,111(2-3): 172-181. [13] MERRYMAN BONCORI J P,LANGER ANDERSEN M,DALL J,et al.Intercomparison and validation of SAR-based ice velocity measurement techniques within the Greenland Ice Sheet CCI project [J].Remote Sensing,2018,10(6): 929. [14] 张生鹏,周中正,赵利江,等.基于SAR偏移量跟踪法提取岗纳楼冰川流速[J].测绘通报,2020(11): 33-38. [15] ENRICO C,ERIC R.Melt rates in the kilometer-size grounding zone of Petermann Glacier,Greenland,before and during a retreat [J].Proceedings of the National Academy of Sciences of the United States of America,2023,120(20): e2220924120. [16] LI D,JIANG L,HUANG R.Hydrological and kinematic precursors of the 2017 Calving Event at the Petermann Glacier in Greenland observed from multi-source remote sensing data [J].Remote Sensing,2021,13(4): 591. [17] HILL E,GUDMUNDSSON G H,CARR J R,et al.Twenty-first century response of Petermann Glacier,northwest Greenland to ice shelf loss [J].Journal of Glaciology,2020,67(261): 147-157. [18] 王思胜,江利明,孙永玲,等.基于ALOS PALSAR数据的山地冰川流速估算方法比较: 以喀喇昆仑地区斯克洋坎力冰川为例[J].国土资源遥感,2016,28(2): 54-61. [19] HEID T,KAAB A.Evaluation of existing image matching methods for deriving glacier surface displacements globally from optical satellite imagery [J].Remote Sensing of Environment,2012,118: 339-355. [20] 牛牧野,周春霞,刘婷婷.基于改进NCC算法的东南极极记录冰川流速提取研究[J].极地研究,2016,28(2): 243-249. [21] 鞠琦,李刚,李超越,等.基于Sentinel-1影像追踪与迭代SVD技术提取格陵兰Petermann冰川流速时序[J].遥感学报,2022,1-14.DOI: 10.11834/jrs.20222031. [22] LEMOS A,SHEPHERD A,MCMILLAN M,et al.Ice velocity of Jakobshavn Isbr,Petermann Glacier,Nioghalvfjerdsfjorden,and Zachari Isstrøm,2015-2017,from Sentinel 1-a/b SAR imagery [J].The Cryosphere Discussions,2018,12(6): 2087-2097. [23] LI G,MAO Y,FENG X,et al.Monitoring ice flow velocity of Petermann Glacier combined with Sentinel-1 and-2 imagery [J].International Journal of Applied Earth Observation and Geoinformation,2023,121: 103374. |