[1] 吴霜,延晓冬,张丽娟.中国森林生态系统能值与服务功能价值的关系[J].地理学报,2014,69(3): 334-342. [2] 冯继广,丁陆彬,王景升,等.基于案例的中国森林生态系统服务功能评价[J].应用生态学报,2016,27(5): 1375-1382. [3] 张恒,贾辉,崔莹莹,等.亚热带人工幼林土壤呼吸与植物功能性状的关系[J].应用生态学报,2023,34(11): 2898-2906. [4] 李德仁,王长委,胡月明,等.遥感技术估算森林生物量的研究进展[J].武汉大学学报(信息科学版),2012,37(6): 631-635. [5] 李明泽,于欣彤,高元科,等.基于SAR极化分解与Landsat数据的森林生物量遥感估测[J].北京林业大学学报,2018,40(2): 1-10. [6] 刘霜.基于Sentinel-1/2的重庆市南川区森林生物量估算研究 [D].成都: 成都理工大学,2021. [7] 杨远盛,张晓霞,于海艳,等.中国森林生物量的空间分布及其影响因素[J].西南林业大学学报,2015,35(6): 45-52. [8] 黄燕平,陈劲松.基于SAR数据的森林生物量估测研究进展[J].国土资源遥感,2013,25(3): 7-13. [9] 辛勤,刘源月,刘云斌.中国亚热带森林土壤呼吸的基本特点[J].成都大学学报(自然科学版),2010,29(1): 32-35. [10] YU Guirui,CHEN Zhi,PIAO Shilong,et al.High carbon dioxide uptake by subtropical forest ecosystems in the East Asian monsoon region[J].Proceedings of the National Academy of Sciences of the United States of America,2014,111(13): 4910-4915. [11] 菅永峰,韩泽民,黄光体,等.基于高分辨率遥感影像的北亚热带森林生物量反演[J].生态学报,2021,41(6): 2161-2169. [12] 方精云,陈安平,赵淑清,等.中国森林生物量的估算: 对Fang等Science一文(Science,2001,291: 2320~2322)的若干说明[J].植物生态学报,2002,26(2): 243-249. [13] 赵敏,周广胜.基于森林资源清查资料的生物量估算模式及其发展趋势[J].应用生态学报,2004,15(8): 1468-1472. [14] LU Dengsheng,CHEN Qi,WANG Guangxing,et al.A survey of remote sensing-based aboveground biomass estimation methods in forest ecosystems[J].International Journal of Digital Earth,2016,9(1):63-105. [15] 郝晴,黄昌.森林地上生物量遥感估算研究综述[J].植物生态学报,2023,47(10): 1356-1374. [16] 周友锋,李明诗.基于随机森林协同克里金法的区域森林地上生物量制图——以粤北森林为例[J].南京林业大学学报(自然科学版),2024,48(1):169-178. [17] CHOPPING M,WANG Zhuosen,SCHAAF C,et al.Forest aboveground biomass in the southwestern United States from a MISR multi-angle index,2000—2015[J].Remote Sensing of Environment,2022,275: 112964. [18] CARTUS O,SANTORO M,WEGMULLER U,et al.Sentinel-1 coherence for mapping above-ground biomass in semiarid forest areas[J].IEEE Geoscience and Remote Sensing Letters,2022,19: 1-5. [19] 庞勇,李增元,余涛,等.森林碳储量遥感卫星现状及趋势[J].航天返回与遥感,2022,43(6): 1-15. [20] 马佳敏.机载激光雷达反演森林生物量研究综述[J].林业科技通讯,2024(4): 39-43. [21] XU Dandan,WANG Haobin,XU Weixin,et al.LiDAR applications to estimate forest biomass at individual tree scale: opportunities,challenges and future perspectives[J].Forests,2021,12(5): 550. [22] ABBAS S,WONG M S,WU Jin,et al.Approaches of satellite remote sensing for the assessment of above-ground biomass across tropical forests: pan-tropical to national scales[J].Remote Sensing,2020,12(20): 3351. [23] MARKUS T,NEUMANN T,MARTINO A,et al.The Ice,Cloud,and land Elevation Satellite-2 (ICESat-2): science requirements,concept,and implementation[J].Remote Sensing of Environment,2017,190: 260-273. [24] NEUENSCHWANDER A,PITTS K.The ATL08 land and vegetation product for the ICESat-2 Mission[J].Remote Sensing of Environment,2019,221: 247-259. [25] LIU Meng,POPESCU S.Estimation of biomass burning emissions by integrating ICESat-2,Landsat 8,and Sentinel-1 data[J].Remote Sensing of Environment,2022,280:113172. [26] NARINE L,MALAMBO L,POPESCU S.Characterizing canopy cover with ICESat-2: a case study of southern forests in Texas and Alabama,USA[J].Remote Sensing of Environment,2022,281: 113242. [27] ZHU Xiaoxiao,NIE Sheng,WANG Cheng,et al.Consistency analysis of forest height retrievals between GEDI and ICESat-2[J].Remote Sensing of Environment,2022,281: 113244. [28] FRANCINI S,D'AMICO G,VANGI E,et al.Integrating GEDI and landsat: spaceborne LiDAR and four decades of optical imagery for the analysis of forest disturbances and biomass changes in Italy[J].Sensors,2022,22(5): 2015. [29] GLENN N F,NEUENSCHWANDER A,VIERLING L A,et al.Landsat 8 and ICESat-2: performance and potential synergies for quantifying dryland ecosystem vegetation cover and biomass[J].Remote Sensing of Environment,2016,185: 233-242. [30] TANG Hao,MA Lei,LISTER A,et al.LiDAR derived biomass,canopy height,and cover for new England Region,USA,2015[J].Environment Science Geoyraphy,2021:237917994. [31] ZHANG Xiao,LIU Liangyun,CHEN Xidong,et al.GLC\_FCS30: global land-cover product with fine classification system at 30 m using time-series Landsat imagery[J].Earth System Science Data,2021,13(6): 2753-2776. [32] 洪奕丰,张守攻,陈伟,等.基于机载激光雷达的落叶松组分生物量反演[J].林业科学研究,2019,32(5): 83-90. [33] 卢佶,张国威,吴昊.基于多时相光学和雷达遥感的太平湖生态保护区森林地上生物量反演[J].浙江农林大学学报,2023,40(5): 1082-1092. [34] LIANG Mengyu,DUNCANSON L,SILVA J A,et al.Quantifying aboveground biomass dynamics from charcoal degradation in Mozambique using GEDI Lidar and Landsat[J].Remote Sensing of Environment,2023,284: 113367. [35] CHEN Lin,REN Chunying,BAO Guangdao,et al.Improved object-based estimation of forest aboveground biomass by integrating LiDAR data from GEDI and ICESat-2 with multi-sensor images in a heterogeneous mountainous region[J].Remote Sensing,2022,14(12): 2743. [36] 吴鹏,丁访军,陈骏.中国西南地区森林生物量及生产力研究综述[J].湖北农业科学,2012,51(8): 1513-1518. [37] 李明诗,谭莹,潘洁,等.结合光谱、纹理及地形特征的森林生物量建模研究[J].遥感信息,2006,21(6): 6-9. |