[1] 许强,朱星,李为乐,等.“天-空-地”协同滑坡监测技术进展[J].测绘学报,2022,51(7): 1416-1436. [2] 中华人民共和国统计局.中国统计年鉴[M].北京:中国统计出版社,2020. [3] 许强,陆会燕,李为乐,等.滑坡隐患类型与对应识别方法[J].武汉大学学报(信息科学版),2022,47(3): 377-387. [4] 唐亚明,张茂省,李林,等.滑坡易发性危险性风险评价例析[J].水文地质工程地质,2011,38(2): 125-129. [5] BUI D T,TSANGARATOS P,NGUYEN V T,et al.Comparing the prediction performance of a deep learning neural network model with conventional machine learning models in landslide susceptibility assessment[J].Catena,2020,188:104426. [6] MOHAMMADI S,TAIEBAT H.Finite element simulation of an excavation-triggered landslide using large deformation theory[J].Engineering Geology,2016,205: 67-72. [7] MONTGOMERY D R,DIETRICH W E.A physically based model for the topographic control on shallow landsliding[J].Water Resources Research,1994,30(4): 1153-1171. [8] 申怀飞,董雨,杨梅,等.基于AHP与信息量法的甘肃省滑坡易发性评估[J].水土保持研究,2021,28(6): 412-419. [9] TSANGARATOS P,ILIA I,HONG H Y,et al.Applying information theory and GIS-based quantitative methods to produce landslide susceptibility maps in Nancheng county,China[J].Landslides,2017,14(3):1091-1111. [10] TAALAB K,CHENG T,ZHANG Y.Mapping landslide susceptibility and types using random forest[J].Big Earth Data,2018,2(2): 159-178. [11] 王毅,陈曦,唐贵希,等.基于自动机器学习的全球尺度滑坡灾害易发性预测[J].资源环境与工程,2022,36(5): 604-613. [12] YIN Y,ZHANG Z,ZHANG W,et al.Landslide susceptibility mapping using multiscale sampling strategy and convolutional neural network: a case study in Jiuzhaigou region[J].Catena,2020,195,104851. [13] 刘青豪,张永红,邓敏,等.大范围地表沉降时序深度学习预测法[J].测绘学报,2021,50(3): 396-404. [14] 李文彬,范宣梅,黄发明,等.不同环境因子联接和预测模型的滑坡易发性建模不确定性[J].地球科学,2021,46(10): 3777-3795. [15] 吕蓓茹,彭玲,李樵民.顾及样本敏感性的滑坡易发性评价[J].测绘通报,2022(11): 20-25. [16] 刘瑜,汪珂丽,邢潇月,等.地理分析中的空间效应[J].地理学报,2023,78(3): 517-531. [17] 刘青豪,刘慧敏,张永红,等.顾及空间异质性的大范围地面沉降时空预测[J].遥感学报,2022,26(7): 1315-1325. [18] 骆剑承,周成虎,梁怡等.多尺度空间单元区域划分方法[J].地理学报,2002(2): 167-173. [19] STATISTICS L B,BREIMAN L.Random forests[J].Machine Learning,2001,45(1): 5-32. [20] 刘坚,李树林,陈涛.基于优化随机森林模型的滑坡易发性评价[J].武汉大学学报(信息科学版),2018,43(7): 1085-1091. [21] 黄发明,殷坤龙,蒋水华,等.基于聚类分析和支持向量机的滑坡易发性评价[J].岩石力学与工程学报,2018,37(1): 156-167. [22] 吴常润,角媛梅,王金亮,等.基于频率比-逻辑回归耦合模型的双柏县滑坡易发性评价[J].自然灾害学报,2021,30(4): 213-224. [23] 陈飞,蔡超,李小双,等.基于信息量与神经网络模型的滑坡易发性评价[J].岩石力学与工程学报,2020,39(S1): 2859-2870. |