[1] 曹伟,陈动,史玉峰,等.激光雷达点云树木建模研究进展与展望[J].武汉大学学报(信息科学版),2021,46(2):203-220. [2] 黄昌狄,葛中华,杜浩强,等.基于车载移动测量系统的大比例尺地形图数学精度评价方法[J].测绘地理信息,2022,47(2):119-122. [3] 叶飞,张世明,孙振勇,等.移动背包三维激光扫描系统在陡岸水库测绘中的应用:以白鹤滩水电站库区典型河段为例[J].测绘通报,2023(10):173-176. [4] BESL P J, MCKAY N D.A method for registration of 3D shapes[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,1992,14(2):239-256. [5] MARANI R,RENÒ V,NITTI M,et al.A modified iterative closest point algorithm for 3D point cloud registration[J].Computer-Aided Civil and Infrastructure Engineering,2016,31(7):515-534. [6] SHI Xiaojing,LIU Tao,HAN Xie.Improved iterative closest point(ICP) 3D point cloud registration algorithm based on point cloud filtering and adaptive fireworks for coarse registration[J].International Journal of Remote Sensing,2020,41(8):3197-3220. [7] YUE Xiaofeng,LIU Zeyuan,ZHU Juan,et al.Coarse-fine point cloud registration based on local point-pair features and the iterative closest point algorithm[J].Applied Intelligence,2022,52(11):12569-12583. [8] PROKOP M,SHAIKH S A,KIM K S.Low overlapping point cloud registration using line features detection[J].Remote Sensing,2020,12(1):61. [9] LEE E,KWON Y,KIM C,et al.Multi-source point cloud registration for urban areas using a coarse-to-fine approach[J].GIScience & Remote Sensing,2024,61(1):2341557. [10] MEI Guofeng,TANG Hao,HUANG Xiaoshui,et al.Unsupervised deep probabilistic approach for partial point cloud registration[C]//Proceedings of 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).Vancouver,BC:IEEE,2023:13611-13620. [11] 但远宏,惠郁雯.局部特征的高精度点云配准算法研究[J].重庆理工大学学报(自然科学),2025,39(3):110-117. [12] ZHANG Wuming,QI Jianbo,WAN Peng,et al.An easy-to-use airborne LiDAR data filtering method based on cloth simulation[J].Remote Sensing,2016,8(6):501. [13] LOWE D G.Distinctive image features from scale-invariant keypoints[J].International Journal of Computer Vision,2004,60(2):91-110. [14] LOWE D G.Object recognition from local scale-invariant features[C]//Proceedings of the 7th IEEE International Conference on Computer Vision.Kerkyra:IEEE,1999:1150-1157. [15] CHEBROLU N,LÄBE T,VYSOTSKA O,et al.Adaptive robust kernels for non-linear least squares problems[J].IEEE Robotics and Automation Letters,2021,6(2):2240-2247. |