[1] 林晓萍.基于国产卫星影像的自然资源动态监测[J].测绘通报,2020(11):28-32. [2] 马锦山,贾国焕,张赛,等.基于多源高分辨率遥感影像的典型自然资源要素提取[J].测绘通报,2024(3):123-126. [3] 王权,尤淑撑.陆地卫星遥感监测体系及应用前景[J].测绘学报,2022,51(4):534-543. [4] 史文中,张敏.人工智能用于遥感目标可靠性识别:总体框架设计、现状分析及展望[J].测绘学报,2021,50(8):1049-1058. [5] 张继贤,顾海燕,杨懿,等.高分辨率遥感影像智能解译研究进展与趋势[J].遥感学报,2021,25(11):2198-2210. [6] HOESER T,BACHOFER F,KUENZER C.Object detection and image segmentation with deep learning on earth observation data:a review:part II:applications[J].Remote Sensing,2020,12(18):3053. [7] 徐丹青,吴一全.光学遥感图像目标检测的深度学习算法研究进展[J].遥感学报,2024,28(12):3045-3073. [8] 张戬,高雅.深度学习遥感影像解译技术在耕地保护中的应用[J].测绘通报,2023(8):142-145. [9] 张吉玲,王庆,王静,等.改进U-Net网络的高分辨率遥感影像变化检测算法[J].遥感信息,2023,38(3):122-129. [10] 马永军,张艺,王广来,等.改进UNet++的遥感影像森林变化检测方法[J].森林与环境学报,2024,44(3):317-327. [11] FANG Sheng,LI Kaiyu,SHAO Jinyuan,et al.SNUNet-CD:a densely connected Siamese network for change detection of VHR images[J].IEEE Geoscience and Remote Sensing Letters,2022,19:8007805. [12] ZHU Qiqi,GUO Xi,DENG Weihuan,et al.Land-Use/Land-Cover change detection based on a Siamese global learning framework for high spatial resolution remote sensing imagery[J].ISPRS Journal of Photogrammetry and Remote Sensing,2022,184:63-78. [13] CAYE DAUDT R,LE SAUX B,BOULCH A.Fully convolutional Siamese networks for change detection[C]//Proceedings of the 25th IEEE International Conference on Image Processing (ICIP).Athens:IEEE,2018:4063-4067. [14] PENG Daifeng,ZHANG Yongjun,GUAN Haiyan.End-to-end change detection for high resolution satellite images using improved UNet++[J].Remote Sensing,2019,11(11):1382. [15] CHEN Jie,YUAN Ziyang,PENG Jian,et al.DASNet:dual attentive fully convolutional Siamese networks for change detection in high-resolution satellite images[J].IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing,2021,14:1194-1206. |