测绘通报 ›› 2017, Vol. 0 ›› Issue (2): 40-44.doi: 10.13474/j.cnki.11-2246.2017.0045
Previous Articles Next Articles
CAO Bin1, QIU Zhenge1, ZHU Shulong2, CAO Bincai2
Received:
2016-06-11
Revised:
2016-09-11
Online:
2017-02-25
Published:
2017-03-01
CLC Number:
CAO Bin, QIU Zhenge, ZHU Shulong, CAO Bincai. Improvement of BPANN Based Algorithm for Estimating Water Depth from Satellite Imagery[J]. 测绘通报, 2017, 0(2): 40-44.
[1] 王艳姣, 张鹰. 基于BP人工神经网络的水体遥感测深方法研究[J]. 海洋工程, 2005, 23(4):33-38. [2] ÖZCELIK C, YALCIN A. Remote Sensing of Water Depths in Shallow Waters via Artificial Neural Networks[J]. Estuarine Coastal & Shelf Science, 2010, 89(1):89-96. [3] LEE K H, MIZUTANI N, FUJII T. Prediction of Wave Breaking on a Gravel Beach by an Artificial Neural Network[J]. Journal of Coastal Research, 2011, 27(27):318-328. [4] NAGAMANI P V, CHAUHAN P, SANWLANI N, et al. Artificial Neural Network (ANN) Based Inversion of Benthic Substrate Bottom Type and Bathymetry in Optically Shallow Waters-Initial Model Results[J]. Journal of the Indian Society of Remote Sensing, 2012, 40(1):137-143. [5] 张振兴, 郝燕玲. 卫星遥感多光谱浅海水深反演法[J]. 中国航海, 2012, 35(1):13-18. [6] GHOlAMALIFARD M, KUTSER T, ESMAILI-SARI A, et al. Remotely Sensed Empirical Modeling of Bathymetry in the Southeastern Caspian Sea[J]. Remote Sensing, 2013, 5(6):2746-2762. [7] MOHAMED H, MNEGM A, ZAHRAN M, et al. Assessment of Artificial Neural Network for Bathymetry Estimation Using High Resolution Satellite Imagery in Shallow Lakes:Case Study El Burullus Lake[C]//Proceeding of Eighteenth International Water Technology Conference, Iwtc 18 Sharm Elsheikh.[S.l.]:Research Gate,2015. [8] 樊彦国, 刘金霞. 基于神经网络技术的遥感水深反演模型研究[J]. 海洋测绘, 2015, 35(4):20-23. [9] 王正, 毛志华, 曾群,等. 基于BP ANN和B算法的黄河口水深遥感比较研究[J]. 华中师范大学学报(自然科学版),2016, 50(1):112-119. [10] KENNEDY J,EBERHART R. Particle Swarm Optimization[C]//Proceeding of IEEE International Conference on Neural Networks. Perth:[s.n.],1995:1942-1948. [11] DEVI S, JAGADEV A K, PATNAIK S. Learning an Artificial Neural Network Using Dynamic Particle Swarm Optimization-Backpropagation:Empirical Evaluation and Comparison[J].Journal of Information and Communication Convergence Engineering,2015,13(2):123-131. [12] CHATTERJEE S, SARKAR S, HORE S, et al. Particle Swarm Optimization Trained Neural Network for Structural Failure Prediction of Multistoried RC Buildings[J].Neural Computing & Applications, 2016:1-12. [13] 王刚刚, 廖庆, 徐玉蕊,等. 改进型粒子群优化算法的BP神经网络全息图压缩[J]. 吉林大学学报(信息科学版), 2016, 34(1):147-152. [14] 杨尚波, 卢小平, 李珵,等. 基于混沌粒子群优化神经网络的GPS高程拟合研究[J]. 测绘通报, 2013(9):5-8. [15] SHI Y, EBERHART R C. Parameter Selection in Particle Swarm Optimization[C]//Proceeding of International Conference on Evolutionary Programming VII.[S.l.]:Springer-Verlag, 1998:591-600. [16] 刘锦萍, 郁金祥. 基于改进的粒子群算法的多元线性回归模型参数估计[J]. 计算机工程与科学, 2010, 32(4):101-105. [17] 曹彬才,邱振戈,朱述龙,等. 高分辨率卫星立体双介质浅水水深测量方法[J].测绘学报,2016,45(8):952-963. |
[1] | WANG Yanjun, LIN Yunhao, WANG Shuhan, LI Shaochun, WANG Mengjie. 3D road boundary extraction based on mobile laser scanning point clouds and OSM data [J]. Bulletin of Surveying and Mapping, 2022, 0(7): 18-25. |
[2] | LIU Lin, SUN Yi, LI Wanwu. Detection model construction based on CNN for offshore drilling platform and training algorithm analysis [J]. Bulletin of Surveying and Mapping, 2022, 0(7): 26-32,99. |
[3] | KONG Ruiyao, XIE Tao, MA Ming, KONG Ruilin. Application of CatBoost model in water depth inversion [J]. Bulletin of Surveying and Mapping, 2022, 0(7): 33-37. |
[4] | WEN Yuxiao, Lü Jie, MA Qingxun, ZHANG Peng, XU Ruling. Study on inversion of forest biomass by LiDAR and hyperspectral [J]. Bulletin of Surveying and Mapping, 2022, 0(7): 38-42. |
[5] | JIANG Zelin, DENG Jian, LUAN Haijun, LI Lanhui. Rapid extraction of COVID-19 information based on nighttime light remote sensing: a case study of Beijing [J]. Bulletin of Surveying and Mapping, 2022, 0(7): 43-48. |
[6] | ZHENG Yan, HE Huan, BU Lijing, JIN Xin. Super-resolution reconstruction method based on self-similarity and edge-preserving decomposition [J]. Bulletin of Surveying and Mapping, 2022, 0(7): 54-59. |
[7] | RAN Chongxian, LI Senlei. Tree canopy delineation using UAV multispectral imagery [J]. Bulletin of Surveying and Mapping, 2022, 0(7): 112-117. |
[8] | LIU Li, DONG Xianmin, LIU Juan, WEN Xuehu. A new method of remote sensing interpretation production based on integration of human-machine and intelligence [J]. Bulletin of Surveying and Mapping, 2022, 0(7): 118-123,137. |
[9] | AI Min, JING Hui, TIAN Yudong, GUO Lanqin, PEI Yuanjie. Analysis of land use and coverage change and driving force in Hulan district of Harbin city in recent 20 Years [J]. Bulletin of Surveying and Mapping, 2022, 0(7): 124-128. |
[10] | LIU Yuxian, RUAN Minghao, YAN Zhen. A method for accurate extraction of gated electric towers based on airborne laser point cloud [J]. Bulletin of Surveying and Mapping, 2022, 0(7): 129-133. |
[11] | LIU Guochao, PENG Weiping, YANG Shuihua, HU Zhouwen. Detection and application of urban road disease based on ground penetrating radar+3D measuring endoscope [J]. Bulletin of Surveying and Mapping, 2022, 0(7): 134-137. |
[12] | LIU Xiaoyu, LIU Yang, DU Mingyi, ZHANG Min, JIA Jingjue, YANG Heng. Research on construction and demolition waste stacking point identification based on DeeplabV3+ [J]. Bulletin of Surveying and Mapping, 2022, 0(4): 16-19,43. |
[13] | LI Jiahao, ZHOU Lü, MA Jun, YANG Fei, XIAN Lingxiao. Deformation monitoring and mechanism analysis of urban subway line based on PS-InSAR technology [J]. Bulletin of Surveying and Mapping, 2022, 0(4): 20-25. |
[14] | SHI Yun, SHI Longlong, NIU Minjie, ZHAO Kan. Multi-task automatic identification of loess landslide based on one-stage instance segmentation network [J]. Bulletin of Surveying and Mapping, 2022, 0(4): 26-31. |
[15] | DOU Shiqing, CHEN Zhiyu, XU Yong, ZHENG Hegang, MIAO Linlin, SONG Yingying. Hyperspectral image classification based on multi-feature fusion and dimensionality reduction algorithms [J]. Bulletin of Surveying and Mapping, 2022, 0(4): 32-36,50. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||