[1] 刘扬,付征叶,郑逢斌.高分辨率遥感影像目标分类与识别研究进展[J].地球信息科学学报,2015,17(9):1080-1091. [2] DALAL N,TRIGGS B.Histograms of Oriented Gradients for Human Detection[C]//Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition(CVPR'05).[S.l.]:IEEE,2005. [3] LOWE D G.Object Recognition from Local Scale-invariant Features[C]//Proceedings of the 7th IEEE International Conference on Computer Vision.Kerkyra:IEEE,1999. [4] LOWE D G.Distinctive Image Features from Scale-invariant Keypoints[J].International Journal of Computer Vision,2004,60(2):91-110. [5] HINTON G E,SALAKHUTDINOV R R.Reducing the Dimensionality of Data with Neural Networks[J].Science,2006,313(5786):504-507. [6] COLLOBERT R,WESTON J.A Unified Architecture for Natural Language Processing:Deep Neural Networks with Multitask Learning[C]//Proceedings of the 25th International Conference on Machine Learning.Helsinki:ACM,2008. [7] BENGIO Y.Learning Deep Architectures for AI[J].Foundations and Trends in Machine Learning,2009,2(1):1-127. [8] MOHAMED A,SAINATH T N,DAHL G,et al.Deep Belief Networks Using Discriminative Features for Phone Recognition[C]//IEEE International Conference on Acoustics,Speech and Signal Processing(ICASSP).Pragve:IEEE,2011. [9] CHAN T,JIA K,GAO S,et al.PCANet:A Simple Deep Learning Baseline for Image Classification?[J].IEEE Transactions on Image Processing,2015,24(12):5017-5032. [10] KAVUKCUOGLU K,RANZATO M,LECUN Y.Fast Inference in Sparse Coding Algorithms with Applications to Object Recognition[C]//Proceedings of OPT 2008.[S.l.]:[s.n.],2008. [11] SILVER D,HUANG A,MADDISON C J,et al.Mastering the Game of Go with Deep Neural Networks and Tree Search[J].Nature,2016,529(7587):484-489. [12] ZHANG F,DU B,ZHANG L.Scene Classification via a Gradient Boosting Random Convolutional Network Framework[J].IEEE Transactions on Geoscience and Remote Sensing,2016,54(3):1793-1802. [13] HU W,HUANG Y,WEI L,et al.Deep Convolutional Neural Networks for Hyperspectral Image Classification[J].Journal of Sensors,2015(2015):1-12. [14] MA X,GENG J,WANG H.Hyperspectral Image Classification via Contextual Deep Learning[J].EURASIP Journal on Image and Video Processing,2015.https://doi.org/10.1186/s13640-015-0071-8. [15] CHEN X,XIANG S,LIU C,et al.Aircraft Detection by Deep Belief Nets[C]//20132nd IAPR Asian Conference on Pattern Recognition(ACPR 2013).Naha:IEEE,2013:54-58. [16] CHEN X,XIANG S,LIU C,et al.Vehicle Detection in Satellite Images by Hybrid Deep Convolutional Neural Networks[J].IEEE Geoscience and Remote Sensing Letters,2014,11(10):1797-1801. [17] DIAO W,SUN X,DOU F,et al.Object Recognition in Remote Sensing Images Using Sparse Deep Belief Networks[J].Remote Sensing Letters,2015,6(10):745-754. [18] HAN J,ZHANG D,CHENG G,et al.Object Detection in Optical Remote Sensing Images Based on Weakly Supervised Learning and High-level Feature Learning[J].IEEE Transactions on Geoscience and Remote Sensing,2015,53(6):3325-3337. [19] 高常鑫,桑农.基于深度学习的高分辨率遥感影像目标检测[J].测绘通报,2014(S1):108-111. [20] 王万国,田兵,刘越,等.基于RCNN的无人机巡检图像电力小部件识别研究[J].地球信息科学学报,2017,19(2):256-263. [21] HE K,ZHANG X,REN S,et al.Deep Residual Learning for Image Recognition[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.Las Vegas:IEEE,2016. [22] SZEGEDY C,LIU W,JIA Y,et al.Going Deeper with Convolutions[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.Boston:IEEE,2015. [23] DAI J,LI Y,HE K,et al.R-FCN:Object Detection via Region-based Fully Convolutional Networks[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.Las Vegas:IEEE,2016. [24] GIRSHICK R.Fast r-cnn[C]//Proceedings of the IEEE International Conference on Computer Vision.[S.l.]:IEEE,2005. [25] REN S,HE K,GIRSHICK R,et al.Faster R-CNN:Towards Real-time Object Detection with Region Proposal Networks[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2017,39(6):1137-1149. [26] SHRIVASTAVA A,GUPTA A,GIRSHICK R.Training Region-based Object Detectors with Online Hard Example Mining[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.Las Vegas:IEEE,2016. |