[1] 徐逸之, 姚晓婧, 李祥, 等. 基于全卷积网络的高分辨遥感影像目标检测[J]. 测绘通报, 2018(1):77-82. [2] 刘大伟, 韩玲, 韩晓勇. 基于深度学习的高分辨率遥感影像分类研究[J]. 光学学报, 2016, 36(4):1-9. [3] KRIZHEVSKY A, SUTSKEVER I, HINTON G E. Imagenet classification with deep convolutional neural networks[C]//Advances in Neural Information Processing Systems.[S.l.]:University of Toronto,2012. [4] 许夙晖, 慕晓冬, 赵鹏, 等. 利用多尺度特征与深度网络对遥感影像进行场景分类[J]. 测绘学报, 2016, 45(7):834-840. [5] 何小飞, 邹峥嵘, 陶超, 等. 联合显著性和多层卷积神经网络的高分影像场景分类[J]. 测绘学报, 2016, 45(9):1073-1080. [6] MAGGIORI E, TARABALKA Y, CHARPIAT G, et al. Convolutional neural networks for large-scale remote-sensing image classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55(2):645-657. [7] LONG J, SHELHAMER E, DARRELL T. Fully convolu-tional networks for semantic segmentation[C]//IEEE Conference on Computer Vision and Pattern Recognition.[S.l.]:IEEE Computer Society, 2015. [8] RONNEBERGER O, FISCHER P, BROX T. U-Net:convolutional networks for biomedical image segmentation[M].[S.l.]:Springer International Publishing, 2015. [9] RUIRUI L, WENJIE L, LEI Y, et al. DeepUNet:a deep fully convolutional network for pixel-level sea-land segmentation[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2018:1-9. [10] ZHANG Z, LIU Q, WANG Y. Road extraction by deep residual U-Net[J]. IEEE Geoscience and Remote Sensing Letters, 2018, 15(5):748-753. [11] XU Y, WU L, XIE Z, et al. Building extraction in very high resolution remote sensing imagery using deep learning and guided filters[J]. Remote Sensing, 2018, 10(1):144. [12] WANG T, HE P L. The classification algorithm based on the cross entropy rule and new activation function in fuzzy neural network[C]//2005 International Conference on Machine Learning and Cybernetics. Guangzhou:IEEE, 2005. [13] KINGMA D P, BA J. Adam:a method for stochastic optimization[C]//The 3rd International Conference for Learning Representations. San Diego:[s.n.], 2015. [14] CORTES C, VAPNIK V. Support-vector networks[J]. Machine Learning, 1995, 20(3):273-297. [15] FRIEDMAN J H. Greedy function approximation:a gradient boosting machine[J]. Annals of Statistics, 2001, 29(5):1189-1232. |