[1] 王艳梅.基于ENVI的高分辨率遥感图像在道路提取中的应用研究[J].哈尔滨师范大学自然科学学报,2012,28(4):24-26. [2] 李强,张景发.道路震害遥感提取方法现状与应急应用展望[J].地震,2017,37(4):80-92. [3] 史守正,石忆邵.基于智能公交数据的道路拥堵信息提取与分析[J].苏州科技学院学报(自然科学版),2016,33(2):68-73. [4] FANG L, YANG B. Automated extracting structural roads from mobile laser scanning point clouds[J]. Acta Geodaetica et Cartographica Sinica, 2013,42(2):260-267. [5] CHEN Y, KRUMM J. Probabilistic modeling of traffic lanes from GPS traces[C]//Sigspatial International Conference on Advances in Geographic Information Systems.[S.l.]:ACM, 2010:81-88. [6] EDELKAMP S, SCHRÖDL S. Route planning and map inference with global positioning traces[J]. Computer Science in Perspective, 2003,2598(1):128-151. [7] WAGSTAFF K, CARDIE C, ROGERS S. Constrained K-means clustering with background knowledge[C]//Eighteenth International Conference on Machine Learning.[S.l.]:Morgan Kaufmann Publishers, 2001:577-584. [8] KNOOP V L, BAKKER P F D, TIBERIUS C C J M, et al. Lane determination with GPS precise point positioning[J]. IEEE Transactions on Intelligent Transportation Systems, 2017, 18(9):2503-2513. [9] 杨晓雯.遥感图像道路信息提取方法研究进展[J].中小企业管理与科技(上旬刊),2017(9):189-190. [10] 叶雪娜.基于卷积神经网络的遥感图像道路提取研究[D].西安:陕西师范大学,2017. [11] 王帅帅.基于街景影像的道路线提取[D].北京:北京建筑大学,2016. [12] 李玲利.高分辨率SAR图像城市道路提取算法研究与改进[D].南京:东南大学,2017. [13] 任建平.利用高分辨率遥感影像提取城市路网信息[D].兰州:兰州大学,2018. [14] 孙家阔,刘扬.基于城市实景影像的车道线检测方法研究[J].城市勘测,2017(3):124-127. [15] 徐军,张鑫淼,李建松.基于双层案例推理模型的高分辨率遥感影像道路提取方法[J].大连海事大学学报,2017,43(4):104-111. [16] 魏国武,王琦,张阳阳,等.道路综合特征下高分辨率遥感影像的提取[J].测绘通报,2017(8):31-35. [17] XUN L, LEI H, LI L, et al. A method of vehicle trajectory tracking and prediction based on traffic video[C]//Proceedings of the 2nd IEEE International Conference on Computer and Communications (ICCC).[S.l.]:IEEE, 2016:449-453. [18] MIAO Z, SHI W, SAMAT A, et al. Information fusion for urban road extraction from VHR optical satellite images[J]. IEEE Journal of Selected Topics in Applied Earth Observations & Remote Sensing, 2016,9(5):1817-1829. [19] JIANG M, MIAO Z, GAMBA P, et al. Application of multitemporal InSAR covariance and information fusion to robust road extraction[J]. IEEE Transactions on Geoscience & Remote Sensing, 2017, 55(6):3611-3622. [20] WEI Y, WANG Z, XU M. Road structure refined CNN for road extraction in aerial image[J]. IEEE Geoscience & Remote Sensing Letters, 2017, 14(5):709-713. [21] XIA W, ZHONG N, GENG D, et al. A weakly supervised road extraction approach via deep convolutional nets based image segmentation[C]//International Workshop on Remote Sensing with Intelligent Processing.[S.l.]:IEEE, 2017:1-5. [22] 彭江帆.基于车载激光扫描数据的高速公路道路要素提取方法研究[D].北京:北京建筑大学,2017. [23] 陈飞.基于机载LiDAR点云的道路提取方法研究[D].成都:西南交通大学,2013. [24] 满丹.车载激光扫描数据城市道路及交通标线提取方法研究[D].郑州:信息工程大学,2017. [25] 惠振阳.从机载LiDAR点云中提取城市道路网的关键技术研究[D].武汉:中国地质大学,2017. [26] 王濮,邢艳秋,王成,等.机载LiDAR数据提取山区道路方法研究[J].遥感技术与应用,2017,32(5):851-857. [27] 李游.基于车载激光扫描数据的城市街道信息提取技术研究[D].武汉:武汉大学,2017. [28] 胡澄宇.基于机载LiDAR的林间道路提取方法研究[D].成都:西南交通大学,2016. [29] 魏双全,房华乐,林祥国.先验知识引导的车载激光扫描点云道路信息提取[J].测绘科学,2014,39(10):81-84. [30] LIU R F, LU X S, YUE G W, et al. An automatic extraction method of road from vehicle-borne laser scanning point clouds[J]. Geomatics and Information Science of Wuhan University, 2017, 42(2):250-256. [31] ZHANG W, HU B, QUIST L. Automatic identification and extraction of forest road through advanced LoG matching techniques[C]//Proceedings of 2016 IEEE International Geoscience and Remote Sensing Symposium.[S.l.]:IEEE, 2016:799-801. [32] LUO H F, FANG L N, CHEN C C. Curb point clouds extraction from vehicle-borne laser scanning data[J]. Journal of Geo-Information Science, 2017, 19(7):861-871. [33] GAO Y, ZHONG R, TANG T, et al. Automatic extraction of pavement markings on streets from point cloud data of mobile LiDAR[J]. Measurement Science and Technology,2017,28(8):085203-085216. [34] DU L, ZHONG R, SUN H, et al. Automatic monitoring of tunnel deformation based on high density point clouds data[C]//Proceeding of 2017 ISPRS Geospatial Week. Wuhan:ISPRS, 2017:353-360. [35] JIAO Q S, ZHANG J F, JIANG H B, et al. Typical earthquake damage extraction and three dimensional modeling analysis based on terrestrial laser scanning:a case study of Bailu middle school of Pengzhou city[J]. Remote Sensing for Land & Resources,2016,28(1):166-171. [36] 赵庶旭,张金秋,屈睿涛.一种改进的浮动车地图匹配算法[J].测绘通报,2018(1):97-102. [37] 杨伟,艾廷华.基于车辆轨迹大数据的道路网更新方法研究[J].计算机研究与发展,2016,53(12):2681-2693. [38] 王德浩.基于低频出租车GPS轨迹数据的路网信息提取[D].武汉:武汉大学,2017. [39] 赵庆涛.基于时空大数据交通路网盲信息处理算法与实现[D].济南:山东大学,2016. [40] 唐炉亮,杨雪,靳晨,等.基于约束高斯混合模型的车道信息获取[J].武汉大学学报(信息科学版), 2017, 42(3):341-347. [41] 唐炉亮,杨雪,阚子涵,等.一种基于朴素贝叶斯分类的车道数量探测[J].中国公路学报,2016,29(3):116-123. [42] 郑文斌.基于浮动车轨迹数据的车道数量信息获取关键技术研究[D].武汉:武汉大学,2017. [43] LI J, QIN Q M, YOU L, et al. Parking lot extraction method based on floating car data[J]. Geomatics and Information Science of Wuhan University,2013,38(5):599-603. [44] ZHANG F, ZHU X, GUO W, et al. Sparse link travel time estimation using big data of floating car[J]. Geomatics and Information Science of Wuhan University, 2017,42(1):56-62. [45] SHI C Y, BI C, LI Q Q. Estimation of travel time distributions in urban road networks using low-frequency floating car data[J]. ISPRS International Journal of Geo-Information, 2017, 6(8):253. [46] HUANG J, DENG M, ZHANG Y, et al. Complex road intersection modelling based on low-frequency GPS track data[C]//Proceeding of 2017 ISPRS Geospatial Week. Wuhan:ISPRS, 2017:23-28. [47] NIAN G Y, LI Z, ZHU W Q, et al. Analyzing Behavior Differences of Occupied and Non-Occupied Taxi Drivers Using Floating Car Data[J].Journal of Shanghai Jiaotong University (Science), 2017, 22(6):682-687. [48] ZHENG K, ZHU D. A novel clustering algorithm of extracting road network from low-frequency floating car data[J]. Cluster Computing, 2019, 22(1):12659-12668. |