[1] BRASSEL K E, WEIBEL R. A review and conceptual framework of automated map generalization[J]. International Journal of Geographical Information Systems, 1988, 2(3):229-244. [2] CARMONA M, CARMONA R, HEATH T, et al. Public places, urban spaces:the dimensions of urban design[M].[S.l.]:Architectural Press,2003. [3] WU B, YU B L, WU Q S, et al. An extended minimum spanning tree method for characterizing local urban patterns[J]. International Journal of Geographical Information Science, 2018, 32(3):450-475. [4] ZHANG X, STOTER J, AI T H, et al. Automated evaluation of building alignments in generalized maps[J]. International Journal of Geographical Information Science, 2013, 27(8):1550-1571. [5] WURM M, SCHMITT A, TAUBENBÖCK H. Building types' classification using shape-based features and linear discriminant functions[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2016, 9(5):1901-1912. [6] HE X J, ZHANG X C, XIN Q C. Recognition of building group patterns in topographic maps based on graph partitioning and random forest[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2018, 136:26-40. [7] ZHANG L Q, DENG H, CHEN D, et al. A spatial cognition-based urban building clustering approach and its applications[J]. International Journal of Geographical Information Science, 2013, 27(4):721-740. [8] LECUN Y, BENGIO Y, HINTON G. Deep learning[J]. Nature, 2015, 521(7553):436-444. [9] BRONSTEIN M M, BRUNA J, LECUN Y, et al. Geometric deep learning:going beyond euclidean data[J]. IEEE Signal Processing Magazine, 2017, 34(4):18-42. [10] ZHAO R, AI T H, YU W H, et al. Recognition of building group patterns using graph convolutional network[J]. Cartography and Geographic Information Science, 2020, 47(5):400-417. [11] YAN X F, AI T J, YANG M, et al. Graph convolutional autoencoder model for the shape coding and cognition of buildings in maps[J]. International Journal of Geographical Information Science, 2021, 35(3):490-512. [12] YAN X F, AI T H, YANG M, et al. A graph convolutional neural network for classification of building patterns using spatial vector data[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2019, 150:259-273. [13] HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]//Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).Las Vegas:IEEE,2016:770-778. [14] DEFFERRARD M, BRESSON X, VANDERGHEYNST P. Convolutional neural networks on graphs with fast localized spectral filtering[J].neural information processing systems,2016:3844-3852. [15] DU S H, LUO L Q, CAO K, et al. Extracting building patterns with multilevel graph partition and building grouping[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2016, 122:81-96. [16] DENG Min, TANG Jianbo, LIU Qiliang, et al. Recognizing building groups for generalization:a comparative study[J]. Cartography and Geographic Information Science, 2018, 45(3):187-204. [17] BIEDERMAN I. Recognition-by-components:a theory of human image understanding[J]. Psychological Review, 1987, 94(2):115-147. [18] PEURA M, IIVARINEN J. Efficiency of simple shape[J].Advances in Visual Form Analysis,1997:443-451. [19] BASARANER M, CETINKAYA S. Performance of shape indices and classification schemes for characterising perceptual shape complexity of building footprints in GIS[J]. International Journal of Geographical Information Science, 2017, 31(10):1952-1977. |