[1] OTSU N. A threshold selection method from gray-level histograms[J]. IEEE Transactions on Systems, Man, and Cybernetics, 1979, 9(1):62-66. [2] CANNY J. A computational approach to edge detection[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1986, 8(6):679-98. [3] PREWITT M S J.Object enhancement and extraction[J].Picture Processing&Psychopictorics,1970,15(3):75-149. [4] ZOU Qin, CAO Yu, LI Qingquan, et al. CrackTree:Automatic crack detection from pavement images[J]. Pattern Recognition Letters, 2012, 33(3):227-238. [5] 张宏,英红.频域滤波的水泥路面图像降噪增强方法[J].土木建筑与环境工程, 2015, 37(3):48-52. [6] 高建贞.基于图像分析的道路病害自动检测研究[D].南京:南京理工大学, 2003. [7] GU Jiuxiang, WANG Zhenhua, KUEN J, et al. Recent advances in convolutional neural networks[J]. Pattern Recognition, 2018, 77:354-377. [8] WANG Yanyan,SONG Kechen,LIU Jie,et al.RENet:Rectangular convolution pyramid and edge enhancement network for salient object detection of pavement cracks[J]. Measurement, 2021, 170:108698. [9] JIA Guohui, SONG Weidong, JIA Di, et al. Sample generation of semi-automatic pavement crack labelling and robustness in detection of pavement diseases[J]. Electronics Letters, 2019, 55(23):1235-1238. [10] SONG Weidong, JIA Guohui, ZHU Hong, et al. Automated pavement crack damage detection using deep multiscale convolutional features[J]. Journal of Advanced Transportation, 2020:6412562. [11] LIU Zhenqing, CAO Yiwen, WANG Yize, et al. Computer vision-based concrete crack detection using U-net fully convolutional networks[J]. Automation in Construction, 2019, 104:129-139. [12] 成斌,管海燕,季秋菊,等.车载LiDAR数据的道路裂缝信息自动提取[J].测绘科学, 2018, 43(8):130-134. [13] XIA Guisong, HU Jingwen, HU Fan, et al. AID:a benchmark data set for performance evaluation of aerial scene classification[J].IEEE Transactions on Geoscience and Remote Sensing,2017,55(7):3965-3981. [14] EISENBACH M, STRICKER R, SEICHTER D, et al. How to get pavement distress detection ready for deep learning?A systematic approach[C]//Proceedings of 2017 International Joint Conference on Neural Networks (IJCNN).Anchorage,AK,USA:IEEE,2017:2039-2047. [15] SHI Yong, CUI Limeng, QI Zhiquan, et al. Automatic Road crack detection using random structured forests[J]. IEEE Transactions on Intelligent Transportation Systems, 2016, 17(12):3434-3445. [16] HE Kaiming, ZHANG Xiangyu, REN Shaoqing, et al. Deep residual learning for image recognition[C]//Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition.Las Vegas, NV:IEEE,2016:770-778. [17] BADRINARAYANAN V, KENDALL A, CIPOLLA R. SegNet:a deep convolutional encoder-decoder architecture for image segmentation[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2017,39(12):2481-2495. [18] LIN T Y, GOYAL P, GIRSHICK R, et al. Focal loss for dense object detection[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020, 42(2):318-327. [19] WANG K C P.Designs and implementations of automated systems for pavement surface distress survey[J].Journal of Infrastructure Systems,2000,6(1):24-32. [20] DAVIS J, GOADRICH M. The relationship between precision recall andROC curves[C]//Proceedings of the 23rd International Conference on Machine Learning. Pittsburgh:ACM,2006:233-240. |