[1] MONTERO R, VICTORES J G, MARTÍNEZ S, et al. Past, present and future of robotic tunnel inspection[J]. Automation in Construction, 2015, 59:99-112. [2] ASAKURA T, KOJIMA Y. Tunnel maintenance in Japan[J]. Tunnelling and Underground Space Technology, 2003, 18(2/3):161-169. [3] MAKANTASIS K, PROTOPAPADAKIS E, DOULAMIS A,et al.Deep convolutional neural networks for efficient vision based tunnel inspection[C]//Proceedings of 2015 IEEE International Conference on Intelligent Computer Communication and Processing. Cluj-Napoca, Romania:IEEE,2015:335-342. [4] 张琰, 孔祥思. 移动激光扫描技术在地铁隧道限界检测中的应用[J]. 北京测绘, 2020, 34(6):868-871. [5] 徐瑞丽. 基于DSP的智能饮水机纸杯水位检测方法[J]. 自动化应用, 2014(5):1-3. [6] 马晓雯, 杨怡园, 谢瑞, 等. 基于AI识别的道路基础信息设施系统[J]. 电子制作, 2019(S1):134-135. [7] 朱忠国, 吕京国. 腐蚀算法在遥感影像建筑物边缘提取中的应用[J]. 城市勘测, 2014(6):17-20. [8] 雷健. 人工智能在水环境监测的关键技术研究与工程实践[J]. 价值工程, 2019, 38(22):215-219. [9] CHEN X,FANG H,LIN T Y,et al. Microsoft COCO captions:data collection and evaluation server[EB/OL].[2021-06-10].https://arxiv.org/abs/1504.00325. [10] LONG J, SHELHAMER E, DARRELL T. Fully convolutional networks for semantic segmentation[C]//Proceedings of 2015 IEEE Conference on Computer Vision and Pattern Recognition. Boston, MA:IEEE,2015:3431-3440. [11] REN Shaoqing, HE Kaiming, GIRSHICK R, et al. Faster R-CNN:towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6):1137-1149. [12] 任逍航. 基于深度学习的自然场景图像的中文字检测和识别算法研究[D]. 上海:上海交通大学, 2017. [13] 高士慧. 基于深度学习的图像多标签分类算法研究[D]. 北京:北京交通大学, 2019. [14] HUANG Hongwei, LI Qingtong, ZHANG Dongming. Deep learning based image recognition for crack and leakage defects of metro shield tunnel[J]. Tunnelling and Underground Space Technology, 2018, 77:166-176. |