[1] YU Xueqiao,LANG Maoxiang,GAO Yang,et al. An empirical study on the design of China high-speed rail express train operation plan-from a sustainable transport perspective[J]. Sustainability,2018,10(7):2478. [2] 王平,陈嵘,徐井芒,等. 高速铁路道岔系统理论与工程实践研究综述[J]. 西南交通大学学报,2016,51(2):357-372. [3] 刘彦斌,彭强. 基于PC104的铁路道岔监测系统的设计与实现[J]. 铁路计算机应用,2007,16(8):20-22. [4] 张宇宁,谢琦. 一种基于机器视觉的铁路道岔检测方法[J]. 计算机应用与软件,2015,32(1):225-228. [5] MA Lingfei,LI Ying,LI J,et al. Mobile laser scanned point-clouds for road object detection and extraction:a review[J]. Remote Sensing,2018,10(10):1531. [6] 何森,刘少丽,方玥,等. 铁路道岔场景识别与间距检测[J]. 计算机集成制造系统,2022,28(6):1823-1834. [7] 张云鹏. 基于三维激光扫描技术的既有铁路道岔岔心自动提取方法[J]. 铁道勘察,2019,45(5):31-36. [8] 李博闻,刘瑞,危凤海,等. 基于机载LiDAR的铁路工务设备及周边环境形变分析[J]. 铁道建筑,2023,63(1):143-147. [9] 刘俊博,刘俊尧,孙淑杰,等. 基于激光点云的铁路边坡表面形变检测方法[J]. 铁道建筑,2021,61(11):82-85. [10] 沈聪. 道岔综合监测技术的研究[D]. 北京:中国铁道科学研究院,2016:55-65. [11] WANG Yue,SUN Yongbin,LIU Ziwei,et al. Dynamic graph CNN for learning on point clouds[J]. ACM Transactions on Graphics,38(5):146. [12] GIRARDEAU-MONTAUT D. CloudCompare[D]. Paris:EDF R&D Telecom ParisTech,2016,11. [13] CHARLES R Q,HAO Su,MO Kaichun,et al. PointNet:deep learning on point sets for 3D classification and segmentation[C]//Proceedings of 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Honolulu,HI:IEEE,2017:77-85. [14] QI C R,YI Li,SU Hao,et al. PointNet++:deep hierarchical feature learning on point sets in a metric space[C]//Proceedings of the 31st International Conference on Neural Information Processing Systems. Long Beach:ACM,2017:5105-5114. [15] WIDYANINGRUM E,BAI Qian,FAJARI M K,et al. Airborne laser scanning point cloud classification using the DGCNN deep learning method[J]. Remote Sensing,2021,13(5):859. [16] PIERDICCA R,PAOLANTI M,MATRONE F,et al. Point cloud semantic segmentation using a deep learning framework for cultural heritage[J]. Remote Sensing,2020,12(6):1005. |