[1] 金秋含,王阳萍,杨景玉.基于密度引力和多尺度多特征融合的遥感影像变化检测[J].激光与光电子学进展,2019,56(12):121003. [2] CHEN Hui,ZHANG Ka,XIAO Wen,et al.Building change detection in very high-resolution remote sensing image based on pseudo-orthorectification[J].International Journal of Remote Sensing,2021,42(7):2686-2705. [3] CELIK T.Unsupervised change detection in satellite images using principal component analysis and K-means clustering[J].IEEE Geoscience and Remote Sensing Letters,2009,6(4):772-776. [4] WU Chen,DU Bo,ZHANG Liangpei.Slow feature analysis for change detection in multispectral imagery[J].IEEE Transactions on Geoscience and Remote Sensing,2014,52(5):2858-2874. [5] HALL O,HAY G J.A multiscale object-specific approach to digital change detection[J].International Journal of Applied Earth Observation and Geoinformation,2003,4(4):311-327. [6] 卢丽琛,洪亮.面向对象的高分辨率遥感影像建筑物变化检测[J].牡丹江师范学院学报(自然科学版),2021(1):50-54. [7] 张慧芳,张鹏林,晁剑.使用多尺度模糊融合的高分影像变化检测[J].武汉大学学报(信息科学版),2022,47(2):296-303. [8] 郑东玉.多尺度分割框架下的面向对象高分辨率遥感影像变化检测[D].成都:西南交通大学,2018. [9] WANG Chao,XU Mengxi,WANG Xin,et al.Object-oriented change detection approach for high-resolution remote sensing images based on multiscale fusion[J].Journal of Applied Remote Sensing,2013,7(1):073696. [10] 王嫣然.融合像元级与对象级的高分辨率遥感影像建筑物变化检测[D].武汉:武汉大学,2019. [11] 徐俊峰,蔡晓娜,张保明,等.利用慢特征分析进行多尺度融合的高分辨率影像变化检测[J].测绘科学技术学报,2019,36(1):62-68. [12] 蔡怤晟,向泽君,蔡衡,等.结合特征选择的CVA多尺度遥感影像变化检测[J].测绘通报,2020(8):101-104. [13] 范兴奎,刘广哲,王浩文,等.基于量子卷积神经网络的图像识别新模型[J].电子科技大学学报,2022,51(5):642-650. [14] 席亮.基于量子衍生理论和Grabcut的图像分割方法[J].电子技术与软件工程,2021(2):150-152. [15] CHEN Chen.An improved image segmentation method based on maximum fuzzy entropy and quantum genetic algorithm[C]//Proceedings of the 5th International Conference on Systems and Informatics (ICSAI).Nanjing:IEEE,2018:934-938. [16] DUTTA S,BASARAB A,GEORGEOT B,et al.Image Denoising Inspired by Quantum Many-Body physics[C]//Proceedings of 2021 IEEE International Conference on Image Processing (ICIP).Anchorage,AK:IEEE,2021:1619-1623. [17] MAJJI S R,CHALUMURI A,KUNE R,et al.Quantum processing in fusion of SAR and optical images for deep learning:a data-centric approach[J].IEEE Access,2022,10:73743-73757. [18] 付游,许悟生,谢可夫.基于量子理论的自适应图像融合规则[J].计算机工程与应用,2015,51(21):191-194. [19] 席亮,谢可夫.基于量子衍生图像分解的多聚焦图像融合[J].计算机工程,2015,41(8):268-272. [20] PENG Daifeng,ZHANG Yongjun.Object-based change detection method using refined Markov random field[J].Journal of Applied Remote Sensing,2017,11(1):016024. [21] ZHANG Zhang,TAO Dacheng.Slow feature analysis for human action recognition[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2012,34(3):436-450. [22] FRANZIUS M,WILBERT N,WISKOTT L.Invariant object recognition and pose estimation with slow feature analysis[J].Neural Computation,2011,23(9):2289-2323. [23] JING Weipeng,ZHU Songyu,KANG Peilun,et al.Remote sensing change detection based on unsupervised multi-attention slow feature analysis[J].Remote Sensing,2022,14(12):2834. [24] 许悟生.基于量子理论的数字图像处理研究[D].长沙:湖南师范大学,2013. [25] 范亚洲,张珂,刘林鑫,等.水库水体的最大类间方差迭代遥感提取方法[J].水资源保护,2021,37(3):50-55. [26] PENG Daifeng,BRUZZONE L,ZHANG Yongjun,et al.SemiCDNet:a semisupervised convolutional neural network for change detection in high resolution remote-sensing images[J].IEEE Transactions on Geoscience and Remote Sensing,2021,59(7):5891-5906. [27] WU Chen,DU Bo,CUI Xiaohui,et al.A post-classification change detection method based on iterative slow feature analysis and Bayesian soft fusion[J].Remote Sensing of Environment,2017,199:241-255. [28] 张慧芳.基于机器学习和模糊融合的高分影像变化检测研究[D].武汉:武汉大学,2020. |