[1] INRIX National Traffic Scorecard. INRIX index methodology[EB/OL]. 2013-09-10. http://scorecard.inrix.com/scorecard. [2] SCHRANK D L, LOMAX T J. Urban mobility report[R]. Texas:Texas Transportation Institute, The Texas A & M University System, 2001. [3] Tomtom International BV. 2012-Q3-congestion index North America[R]. [S.l.]:Tomtom International B V, 2012. [4] 刘磊, 张举兵, 杨新苗. 基于出行时间的交通拥挤指数及其评价标准[J]. 交通信息与安全, 2007, 25(5):97-100. [5] 郑淑鉴,杨敬锋. 国内外交通拥堵评价指标计算方法研究[J]. 公路与汽运,2014(1):57-61. [6] 北京市质量技术监督局.城市道路交通运行评价指标体系:DB 11T785-2011[S].北京:北京市质量技术监督局,2011. [7] 宋志洪. 基于地点车速的路段交通拥堵指数计算方法[J].现代工业经济和信息化,2015,5(15):64-67. [8] MAHMOUD S, YUSEF E, AHMED M. Applications of complex network analysis in electric power systems[J]. Energies, 2018,11 (6):1381. [9] LU J H, CHEN G, OGORZALEK M J, et al. Theory and applications of complex networks:advances and challenges[C]//IEEE International Symposium on Circuits & System. [S.l.]:IEEE, 2013. [10] BAUM L E, PETRIE T, SOULES G, et al. A maximization technique occurring in the statistical analysis of probabilistic functions of Markov chains[J]. The Annals of Mathematical Statistics, 1970, 41(1):164-171. [11] RABINER L R. A tutorial on hidden Markov models and selected applications in speech recognition[J]. Proceedings of the IEEE, 1989, 77(2):257-286. [12] LOU Y, ZHANG C Y, XIE X, et al. Map-matching for low-sampling-rate GPS trajectories[C]//Proceedings of the 18th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems. [S.l.]:ACM, 2009:352-361. [13] GOH C Y, DAUWELS J, MITROVIC N, et al. Online map-matching based on hidden markov model for real-time traffic sensing applications[C]//Proceedings of the 15th International IEEE Conference on Intelligent Transportation Systems (ITSC). [S.l.]:IEEE, 2012:776-781. [14] NEWSON P, KRUMM J. Hidden Markov map matching through noise and sparseness[C]//Proceedings of the 17th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems. [S.l.]:ACM, 2009:336-343. |