[1] 张乾,辛晓洲,张海龙,等.基于遥感数据和多因子评价的中国地区建设光伏电站的适宜性分析[J].地球信息科学学报, 2018, 20(1):119-127. [2] CHENG Liang, LI Shuyi, XU Hao, et al. Retraction notice to "calculating potential of solar energy and CO2 emissions reduction for city-scale buildings based on 3D remote sensing technologies"[J]. Remote Sensing of Environment, 2018, 215:530. [3] 王胜利,张连蓬,朱寿红,等.多共性特征联合的Landsat 8 OLI遥感影像光伏电站提取[J].测绘通报, 2018(11):46-52. [4] 王胜利,张连蓬,李行,等.面向特定目标地物提取的改进最佳波段组合方法研究[J].测绘通报, 2017(7):49-54. [5] LIU Yongxue, SUN Chao, YANG Yuhao, et al. Automatic extraction of offshore platforms using time-series Landsat-8 operational land imager data[J]. Remote Sensing of Environment, 2016, 175:73-91. [6] ZHANG Liangpei, ZHANG Lefei, DU Bo. Deep learning for remote sensing data:a technical tutorial on the state of the art[J]. IEEE Geoscience and Remote Sensing Magazine, 2016, 4(2):22-40. [7] LUUS F P S,SALMON B P,VAN DEN BERGH F,et al. Multiview deep learning for land-use classification[J]. IEEE Geoscience and Remote Sensing Letters, 2015, 12(12):2448-2452. [8] LI Erzhu, XIA Junshi, DU Peijun, et al. Integrating multilayer features of convolutional neural networks for remote sensing scene classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55(10):5653-5665. [9] 童心仪.面向广域土地覆盖的高分辨率遥感影像分类方法研究[D].武汉:武汉大学, 2020. [10] 曹林林,李海涛,韩颜顺,等.卷积神经网络在高分遥感影像分类中的应用[J].测绘科学, 2016, 41(9):170-175. [11] 何小飞,邹峥嵘,陶超,等.联合显著性和多层卷积神经网络的高分影像场景分类[J].测绘学报, 2016, 45(9):1073-1080. [12] ZHAO Bei, HUANG Bo, ZHONG Yanfei. Transfer learning with fully pretrained deep convolution networks for land-use classification[J]. IEEE Geoscience and Remote Sensing Letters, 2017, 14(9):1436-1440. [13] PENATTI O A B, NOGUEIRA K, DOS SANTOS J A. Do deep features generalize from everyday objects to remote sensing and aerial scenes domains?[C]//Proceedings of 2015 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW). Boston:IEEE, 2015:44-51. |