[1] 张兵,李俊生,申茜,等.长时序大范围内陆水体光学遥感研究进展[J].遥感学报,2021,25(1):37-52. [2] 李丹,吴保生,陈博伟,等.基于卫星遥感的水体信息提取研究进展与展望[J].清华大学学报(自然科学版),2020,60(2):147-161. [3] MCFEETERS S K.The use of the normalized difference water index(NDWI) in the delineation of open water features[J].International Journal of Remote Sensing,1996,17(7):1425-1432. [4] 徐涵秋.利用改进的归一化差异水体指数(MNDWI)提取水体信息的研究[J].遥感学报,2005,9(5):589-595. [5] FEYISA G L,MEILBY H,FENSHOLT R,et al.Automated water extraction index:a new technique for surface water mapping using Landsat imagery[J].Remote Sensing of Environment,2014,140:23-35. [6] 闫霈,张友静,张元.利用增强型水体指数(EWI)和GIS去噪音技术提取半干旱地区水系信息的研究[J].遥感信息,2007,22(6):62-67. [7] 卢献健,黄俞惠,晏红波,等.基于自动阈值决策树分类的桉树提取研究[J].林业资源管理,2020(4):117-126. [8] 王亚利,都伟冰,王双亭.高斯混合模型自动阈值法遥感冰川信息提取[J].遥感学报,2021,25(7):1434-1444. [9] 张德军,杨世琦,王永前,等.基于GF-1数据的三峡库区水体信息精细化提取[J].人民长江,2019,50(9):233-239. [10] 陈超,傅姣琪,随欣欣,等.面向灾后水体遥感信息提取的知识决策树构建及应用[J].遥感学报,2018,22(5):792-801. [11] 张宏涛,黄宏胜,魏康宁,等.基于面向对象与规则的Sentinel-2A影像土地覆被分类:以江西省都昌县为例[J].测绘通报,2020(6):111-117. [12] 王斌,范冬林.深度学习在遥感影像分类与识别中的研究进展综述[J].测绘通报,2019(2):99-102. [13] 王国杰,胡一凡,张森,等.深度卷积神经网络的遥感影像水体识别[J].遥感学报,2022,26(11):2304-2316. [14] 王一中,胡亚琦,吴小所,等.基于改进Swin Transformer的遥感图像语义分割方法[J].计算机工程与应用,2024,60(11):194-203. [15] STRUDEL R,GARCIA R,LAPTEV I,et al.Segmenter:transformer for semantic segmentation[C]//Proceedings of 2021 IEEE/CVF International Conference on Computer Vision.Montreal:IEEE,2021. [16] DOSOVITSKIY A.An image is worth 16x16 words:Transformers for image recognition at scale [J].International Conference on Learning Representations,2020:225039882. [17] CHEN Xiangning,HSIEH C J,GONG Boqing.When vision transformers outperform ResNets without pre-training or strong data augmentations[J].International Conference on Learning Representations,2021:235313572. [18] CHEN Zhe,WU Jiannan,WANG Wenhai,et al.Intern VL:scaling up vision foundation models and aligning for generic visual-linguistic tasks[C]//Proceedings of 2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition.Seattle:IEEE,2024. [19] ZHU Xizhou,ZHU Jinguo,LI Hao,et al.Uni-perceiver:pre-training unified architecture for generic perception for zero-shot and few-shot tasks[C]//Proceedings of 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition.New Orleans:IEEE,2022. [20] XIAO Tete,LIU Yingcheng,ZHOU Bolei,et al.Unified perceptual parsing for scene understanding[C]//Proceedings of 2018 Computer Vision-ECCV.Cham:Springer International Publishing,2018:432-448. |