[1] GONG Zhiqiang,ZHONG Ping,HU Weidong.Statistical loss and analysis for deep learning in hyperspectral image classification[J].IEEE Transactions on Neural Networks and Learning Systems,2021,32(1):322-333. [2] GHAMISI P,YOKOYA N,LI Jun,et al.Advances in hyperspectral image and signal processing:a comprehensive overview of the state of the art[J].IEEE Geoscience and Remote Sensing Magazine,2017,5(4):37-78. [3] LIANG Liang,DI Liping,ZHANG Lianpeng,et al.Estimation of crop LAI using hyperspectral vegetation indices and a hybrid inversion method[J].Remote Sensing of Environment,2015,165:123-134. [4] POUR A B,ZOHEIR B,PRADHAN B,et al.Editorial for the special issue:multispectral and hyperspectral remote sensing data for mineral exploration and environmental monitoring of mined areas[J].Remote Sensing,2021,13(3):519. [5] SHIMONI M,HAELTERMAN R,PERNEEL C.Hyperspectral imaging for military and security applications:combining myriad processing and sensing techniques[J].IEEE Geoscience and Remote Sensing Magazine,2019,7(2):101-117. [6] CLARK M L,ROBERTS D A.Species-level differences in hyperspectral metrics among tropical rainforest trees as determined by a tree-based classifier[J].Remote Sensing,2012,4(6):1820-1855. [7] YUE Shihong,LI Ping,HAO Peiyi.SVM classification:its contents and challenges[J].Applied Mathematics-A Journal of Chinese Universities,2003,18(3):332-342. [8] RIGATTI S J.Random forest[J].Journal of Insurance Medicine,2017,47(1):31-39. [9] AHMAD M,KHAN A M,MAZZARA M,et al.A fast and compact 3-D CNN for hyperspectral image classification[J].IEEE Geoscience and Remote Sensing Letters,2022,19:5502205. [10] BENEDIKTSSON J A,PALMASON J A,SVEINSSON J R.Classification of hyperspectral data from urban areas based on extended morphological profiles[J].IEEE Transactions on Geoscience and Remote Sensing,2005,43(3):480-491. [11] 高奎亮,刘冰,余岸竹,等.高光谱影像少样例分类的无监督元学习方法[J].测绘学报,2023,52(11):1941-1952. [12] LI Zhaokui,LIU Ming,CHEN Yushi,et al.Deep cross-domain few-shot learning for hyperspectral image classification[J].IEEE Transactions on Geoscience and Remote Sensing,2022,60:5501618. [13] XI Bobo,ZHANG Yun,LI Jiaojiao,et al.CTF-SSCL:CNN-transformer for few-shot hyperspectral image classification assisted by semisupervised contrastive learning[J].IEEE Transactions on Geoscience and Remote Sensing,2024,62:5532617. [14] RANFTL R,LASINGER K,HAFNER D,et al.Towards robust monocular depth estimation:mixing datasets for zero-shot cross-dataset transfer[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2022,44(3):1623-1637. [15] YANG Lihe,KANG Bingyi,HUANG Zilong,et al.Depth anything:unleashing the power of large-scale unlabeled data[C]//Proceedings of 2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).Seattle:IEEE,2024:10371-10381. [16] YANG L,KANG B,HUANG Z,et al.Depth anything v2[J].Advances in Neural Information Processing Systems,2025,37:21875-21911. [17] RANFTL R,BOCHKOVSKIY A,KOLTUN V.Vision transformers for dense prediction[C]//Proceedings of 2021 IEEE/CVF International Conference on Computer Vision (ICCV).Montrea:IEEE,2022:12159-12168. |