[1] SILVA T C, ZHAO L. Semi-supervised Learning Guided by the Modularity Measure in Complex Networks[J]. Neurocomputing, 2012,78(1):30-37. [2] MU OZ-MARI J,BOVOLO F,GO MEZ-CHOVA L,et al. Semisupervised One-class Support Vector Machines for Classification of Remote Sensing Data[J]. IEEE Transactions on Geoscience and Remote Sensing, 2010,48(8):3188-3197. [3] 赵冬泉, 党安荣, 陈吉宁. 监督分类方法在图片资料专题信息提取中的应用研究[J]. 测绘通报, 2006(11):32-34. [4] 贾永红. 人工神经网络在多源遥感影像分类中的应用[J]. 测绘通报, 2000(7):7-8. [5] ZENG S, TONG X, SANG N, et al. A Study on Semi-supervised FCM Algorithm[J]. Knowledge and Information Systems, 2013,35(3):585-612. [6] HAMASUNA Y, ENDO Y. On Semi-supervised Fuzzy C-means Clustering for Data with Clusterwise Tolerance by Opposite Criteria[J]. Soft Computing, 2013,17(1):71-81. [7] DUNN J C. A Fuzzy Relative of the ISODATA Process and Its Use in Detecting Compact Well-separated Clusters[J]. J.Cybern, 1974,3(3):32-57. [8] PEDRYCZ W, WALETZKY J. Fuzzy Clustering with Partial Supervision[J]. IEEE Transactions on Systems, Man, and Cybernetics, 1997,5(27):787-795. [9] STUTZ C, RUNKLER TA. Classification and Prediction of Road Traffic Using Application-specific Fuzzy Clustering[J]. IEEE Transactions on Fuzzy Systems, 2002,10(3):297-308. [10] TUIA D, VOLPI M, COPA L, et al. A Survey of Active Learning Algorithms for Supervised Remote Sensing Image Classification[J]. IEEE J. Sel. Topics Signal Process, 2011,3(5):606-617. [11] LUO T, KRAMER K, GOLDGOF D B, et al. Active Learning to Recognize Multiple Types of Plankton[J]. J. Mach. Learn. Res., 2005,6(4):589-613. [12] LI J, BIOUCAS-DIAS J, PlAZA A. Hyperspectral Image Segmentation Using a New Bayesian Approach with Active Learning[J]. IEEE Trans. Geosci.Remote Sens., 2011,49(10):3947-3960. [13] TUIA D, RATLE F, PACIFICI F, et al. Active Learning Methods for Remote Sensing Image Classification[J]. IEEE Trans. Geosci. Remote Sens., 2009,47(7):2218-2232. |