测绘通报 ›› 2017, Vol. 0 ›› Issue (2): 40-44.doi: 10.13474/j.cnki.11-2246.2017.0045

• 学术研究 • 上一篇    下一篇

BP神经网络遥感水深反演算法的改进

曹斌1, 邱振戈1, 朱述龙2, 曹彬才2   

  1. 1. 上海海洋大学海洋科学学院, 上海 201306;
    2. 信息工程大学, 河南 郑州 450001
  • 收稿日期:2016-06-11 修回日期:2016-09-11 出版日期:2017-02-25 发布日期:2017-03-01
  • 通讯作者: 朱述龙。E-mail:zhushulong668@sina.com E-mail:zhushulong668@sina.com
  • 作者简介:曹斌(1992-),男,硕士生,研究方向为海洋遥感监测。E-mail:caobinalonzo@sina.com
  • 基金资助:

    上海市科委科研基金(14590502200)

Improvement of BPANN Based Algorithm for Estimating Water Depth from Satellite Imagery

CAO Bin1, QIU Zhenge1, ZHU Shulong2, CAO Bincai2   

  1. 1. College of Marine Sciences, Shanghai Ocean University, Shanghai 201306, China;
    2. Information Engineering University, Zhengzhou 450001, China
  • Received:2016-06-11 Revised:2016-09-11 Online:2017-02-25 Published:2017-03-01

摘要:

针对BP神经网络遥感水深反演算法(简称传统BP算法)的缺点,提出了改进型BP神经网络遥感水深反演算法(简称改进型BP算法),其基本原理是在模型训练过程中反复运用粒子群算法对BP神经网络的权值和阈值进行优化以弥补传统BP算法的不足。试验表明:改进型BP算法的训练迭代收敛速度明显快于传统BP算法,浅水区的水深反演精度优于传统BP算法,且学习算法对初始权值和阈值不敏感。

关键词: 遥感水深反演, 传统BP算法, 粒子群算法, 改进型BP算法, 权值和阈值优化

Abstract:

BPANN algorithm is commonly used for estimating water depth from satellite imagery. In this paper, an improved BPANN algorithm is presented to overcome some disadvantages of BPANN algorithm. Its principle is that particle swarm optimization (PSO) is used to optimize the weights and thresholds of ANN in the process of training. The experiments show that improved BPANN algorithm has faster convergence speed and better generalization ability, it is not sensitive to initial weights and thresholds, and it can make more accurate results than BPANN algorithm.

Key words: estimating water depth from satellite imagery, backpropagation-based artificial neural network algorithm (BPANN algorithm), particle swarm optimization (PSO), improved BPANN algorithm, optimization of initial weights and thresholds

中图分类号: