测绘通报 ›› 2018, Vol. 0 ›› Issue (6): 82-85.doi: 10.13474/j.cnki.11-2246.2018.0181

• 技术交流 • 上一篇    下一篇

D-InSAR和水准数据融合方法研究

杨帆, 赵增鹏, 张磊, 张子文   

  1. 辽宁工程技术大学测绘与地理科学学院, 辽宁 阜新 123000
  • 收稿日期:2017-08-16 修回日期:2018-04-18 出版日期:2018-06-25 发布日期:2018-07-07
  • 通讯作者: 赵增鹏。E-mail:1300714651@qq.com E-mail:1300714651@qq.com
  • 作者简介:杨帆(1972-),男,博士,教授,主要从事变形监测与预报方向的研究。E-mail:zhaoshao176@163.com
  • 基金资助:
    辽宁省教育厅重点实验室基础研究项目(LJZS001);卫星测绘技术与应用国家测绘地理信息局重点实验室经费(KLSMTA-201707);辽宁工程技术大学研究生教育创新计划(YS201610)

Research on Method of D-InSAR and Level Data Fusion

YANG Fan, ZHAO Zengpeng, ZHANG Lei, ZHANG Ziwen   

  1. School of Geomatics, Liaoning Technical University, Fuxin 123000, China
  • Received:2017-08-16 Revised:2018-04-18 Online:2018-06-25 Published:2018-07-07

摘要: 地面沉降是一个全球性问题,严重影响了生态环境和可持续发展,因此对地面进行周密的监测和变形预测分析显得尤为重要。针对D-InSAR监测技术在沉降盆地中心区域精度较低,而传统水准测量只能得到有限个点元变形信息的缺点,本文采用集合卡尔曼滤波对D-InSAR值与水准值进行数据同化,从而使同化结果更加符合沉降区域的沉降规律。通过实例验证表明:基于集合卡尔曼滤波的D-InSAR值和水准值数据融合结果相对于D-InSAR值有了很大改善,提高了基地面沉降监测的精度和可靠性;同化后的平均误差为3.10 mm,比D-InSAR值的平均误差6.90 mm有了很大的提高。

关键词: D-InSAR, 集合卡尔曼滤波, 数据融合, 变形监测

Abstract: Ground subsidence is a global problem,which seriously affects the ecological environment and sustainable development.Therefore,it is very important to carry out careful monitoring and deformation prediction on the ground.According to the shortcomings of D-InSAR monitoring technology in the central area of the settlement basin,and the traditional level measurement can only get the finite element deformation information,this paper uses the ensemble Kalman filter to assimilate the D-InSAR data and the level measurement data,so that the assimilation results are more consistent with the settlement law of the subsidence area.The example shows that the results of D-InSAR and leveling data assimilation based on the ensemble Kalman filter have greatly improved the accuracy and reliability of the subsurface settlement monitoring.The average error after assimilation is 3.10 mm,which is much higher than that of D-InSAR value of 6.90 mm.

Key words: D-InSAR, ensemble Kalman filter, data fusion, deformation monitoring

中图分类号: