测绘通报 ›› 2018, Vol. 0 ›› Issue (7): 29-33,47.doi: 10.13474/j.cnki.11-2246.2018.0204

• 学术研究 • 上一篇    下一篇

极化特征组合在ALOS PALSAR数据地物分类中的应用

贾诗超1, 薛东剑1,2, 李成绕1   

  1. 1. 成都理工大学地球科学学院, 四川 成都 610059;
    2. 国土资源部地学空间信息技术重点实验室, 四川 成都 610059
  • 收稿日期:2017-09-21 出版日期:2018-07-25 发布日期:2018-08-02
  • 通讯作者: 薛东剑。E-mail:xdj101@sina.com E-mail:xdj101@sina.com
  • 作者简介:贾诗超(1993-),男,硕士生,主要从事SAR图像分类研究。E-mail:923137407@qq.com
  • 基金资助:
    四川省教育厅重点项目(16ZA0100);国土资源部地学空间信息技术重点实验室开放基金(KLGSIT2013-06)

Application of Polarization Characteristic Combination in ALOS PALSAR Data Classification

JIA Shichao1, XUE Dongjian1,2, LI Chengrao1   

  1. 1. College of Earth Sciences of Chengdu University, Chengdu 610059, China;
    2. Key Laboratory of Geoscience Spatial Information Technology of Ministry of Land and Resources, Chengdu 610059, China
  • Received:2017-09-21 Online:2018-07-25 Published:2018-08-02

摘要: 极化SAR图像分类是目前遥感领域研究热点之一,它为地物信息获取和地物分类提供了新方法。文中对四川省彭州石化地区利用ALOS PALSAR全极化数据进行支持向量机(SVM)分类。试验中首先获得极化总功率,然后对数据进行Cloude-Pottier极化分解,再基于相干矩阵的特征值,提取特征参数香农熵和雷达植被指数。组合这些极化特征对影像进行SVM的分类,并与基于Freeman-Durden极化分解的SVM分类和Wishart监督分类进行比较。试验结果表明:本文采用的极化特征组合信息之间得到相互补充,分类结果效果较好,Kappa系数为97.14%,相对另两种方法的Kappa系数分别提高了5.26%和27.20%。

关键词: ALOS PALSAR, 极化特征组合, 支持向量机, Cloude-Pottier分解, 地物分类

Abstract: Polarimetric SAR image classification is one of the hots pots in the field of remote sensing,which provides a new means for information acquisition and classification of objects.In this paper,support vector machine (SVM) is used to classify ALOS PALSAR polarized data in Pengzhou petrochemical area,Sichuan province.In the experiment,the total power of polarization is firstly obtained,then the Cloude-Pottier polarization is decomposed,and then the feature parameters,Shannon entropy and radar vegetation index are extracted based on the eigenvalues of the coherent matrix.The SVM classification of the images is carried out by combining these polarimetric features,and compared with the SVM classification based on Freeman-Durden polarization decomposition and Wishart supervised classification.The experimental results show that the polarization characteristic combined with the information is complementary and the classification result is better,the Kappa coefficient is 97.14%,and the Kappa coefficient of the other two methods increased by 5.26% and 27.20%,respectively.

Key words: ALOS PALSAR, polarization characteristic combination, support vector machine, Cloude-Pottier decomposition, classification of objects

中图分类号: