测绘通报 ›› 2018, Vol. 0 ›› Issue (11): 46-52.doi: 10.13474/j.cnki.11-2246.2018.0348

• 学术研究 • 上一篇    下一篇

多共性特征联合的Landsat 8 OLI遥感影像光伏电站提取

王胜利1, 张连蓬1, 朱寿红2, 吉莉1, 柴琪1, 沈扬1, 张蕊1   

  1. 1. 江苏师范大学地理测绘与城乡规划学院, 江苏 徐州 221116;
    2. 江苏省兰德土地工程技术有限公司, 江苏 南京 210019
  • 收稿日期:2018-03-21 出版日期:2018-11-25 发布日期:2018-11-29
  • 通讯作者: 张连蓬。E-mail:zhanglp2000@126.com E-mail:zhanglp2000@126.com
  • 作者简介:王胜利(1992-),男,硕士生,研究方向为遥感影像智能处理技术。E-mail:wsli586@163.com
  • 基金资助:

    国家自然科学基金(41401093;41601405)

Multi-invariant Feature Combined Photovoltaic Power Plants Extraction Using Multi-temporal Landsat 8 OLI Imagery

WANG Shengli1, ZHANG Lianpeng1, ZHU Shouhong2, JI Li1, CHAI Qi1, SHEN Yang1, ZHANG Rui1   

  1. 1. School of Geography, Geomatics and Planning, Jiangsu Normal University, Xuzhou 221116, China;
    2. Rand Project Land Technology Co., Ltd. in Jiangsu Province, Nanjing 210019, China
  • Received:2018-03-21 Online:2018-11-25 Published:2018-11-29

摘要:

遥感监督学习算法具有高度的样本依赖性,因遥感成像辐射偏差导致的数据不准确给监督分类带来较大的挑战,进而给资源监测与分析带来极大的应用困扰。本文针对在不同大气、辐射、光照和成像几何等条件下引起的不同时期和不同空间位置遥感图像上同一类别的分布存在差异现象,提出了一种多共性特征联合的Landsat 8 OLI遥感影像光伏电站提取方法。在分析光伏电站光谱不确定性(数据偏移和波形变异)规律的基础上,尝试将变换后的光谱特征、波形、纹理和波段比值等稳定性强的特征相结合,以期利用多特征间的互补性优势提高算法的泛化性能。首先将遥感影像的RGB波段转换为HLS格式,根据亮度维L计算FT纹理特征,同时加入色度H、饱和度S作为光谱特征,然后将光谱角和波段比值等对像元亮度值变化不敏感的特征考虑在内,以一类支持向量机(OCSVM)作为分类器。试验结果表明,该方法不仅能够有效克服光谱的亮度值差异,且对结构复杂的光伏电站有较好的提取效果。

关键词: 光谱不确定性, 泛化性能, 多共性特征, 光伏电站, 一类支持向量机, 数据偏移

Abstract:

The supervised classification algorithm highly depends on the training samples so that it faces big challenge in the monitoring and analysis of natural resources for the inaccurate data caused by remote sensing imaging radiation deviation. Normally, for the same category on land surface, there are always some spectrum differences in multi-temporal images and different spatial locations on the images for the different conditions of atmosphere, radiation, illumination and acquisition geometries. This paper presents a method of extracting photovoltaic (PV) power plants based on multi invariant feature combination using Landsat 8 OLI remote sensing imagery. Based on the analysis of spectral uncertainty of the ground objects, this method combines the transformed spectral characteristics, spectral curves, texture and band ratio to improve the generalization performance of the ground object extraction algorithm by utilizing the complementation of multiple features. Firstly, the RGB band of the remote sensing image is converted into the HLS format, and the Fourier transform texture feature is calculated according to the brightness dimension L, and the spectral angle, band ratio, hue and saturation are added as the spectral signatures, which is not sensitive to the changes in pixel brightness values. Finally, we choose One-class support vector machine (OCSVM) as a classifier. The experimental results show that our method not only can effectively overcome the differences in pixel brightness values of the objects but also has a better performance on extracting the complex PV power plants.

Key words: spectral uncertainty, generalization performance, multi invariant feature, photovoltaic power plants, one-class support vector machine, dataset shift

中图分类号: