[1] DIACONO M, RUBINO P, MONTEMURRO F. Precision nitrogen management of wheat-a review[J]. Agronomy for Sustainable Development, 2013, 33(1):219-241. [2] XU X G, ZHAO C J, WANG J H, et al. Using optimal combination method and in situ hyperspectral measurements to estimate leaf nitrogen concentration in barley[J]. Precision Agriculture, 2014, 15(2):227-240. [3] PAVULURI K, CHIM B K, GRIFFEY C A, et al. Canopy spectral reflectance can predict grain nitrogen use efficiency in soft red winter wheat[J]. Precision Agriculture, 2015, 16(4):405-424. [4] XUE L H, LI G H, QIN X, et al. Topdressing nitrogen recommendation for early rice with an active sensor in south China[J]. Precision Agriculture, 2014, 15(1):95-110. [5] QUEMADA M, GABRIEL J L, TEJADA P Z, et al. Airborne hyperspectral images and ground-level optical sensors as assessment tools for maize nitrogen fertilization[J]. Remote Sensing, 2014, 6(4):2940-2962. [6] ZHOU X F, HUANG W J, KONG W P, et al. Remote estimation of canopy nitrogen content in winter wheat using airborne hyperspectral reflectance measurements[J]. Advances in Space Research, 2016, 58(9):1627-1637. [7] WANG Z H, SKIDMOREA A K, WANG T J, et al. Canopy foliar nitrogen retrieved from airborne hyperspectral imagery by correcting for canopy structure effects[J]. International Journal of Applied Earth Observation and Geoinformation, 2017, 54:84-94. [8] CATUREGLI L, CORNIGLIA M, GAETANI M, et al. Unmanned aerial vehicle to estimate nitrogen status of turfgrasses[J]. PLoS One, 2016, 11(6):97-127. [9] MARESMA A, ARIZA M, MARTíNEZ E, et al. Analysis of vegetation indices to determine nitrogen application and yield prediction in maize from a standard UAV service[J]. Remote Sensing, 2016, 8(2):973. [10] BAUSCH W C, KHOSLA R. QuickBird satellite versus ground-based multi-spectral data for estimating nitrogen status of irrigated maize[J]. Precision Agriculture, 2010, 11(2):274-290. [11] BASSO B, FIORENTINO C, CAMMARANO D. Variable rate nitrogen fertilizer response in wheat using remote sensing[J]. Precision Agriculture, 2016, 17(2):168-182. [12] 黄敬峰, 王福民, 王秀珍. 水稻高光谱遥感实验研究[M]. 1版. 杭州:浙江大学出版社, 2010. [13] CLEVERS J G P W, KOOISTRA L, BRANDE M M M. Using sentinel-2 data for retrieving LAI and leaf and canopy chlorophyll content of a potato crop[J]. Remote Sensing, 2017, 9(1):405. [14] MORENO F R, CID F L. A decision tree for nitrogen application based on a low cost radiometry[J]. Precision Agriculture, 2012, 13(1):646-660. [15] LEBOURGEOIS V, BE'GUE'A, LABBE' S, et al. A light-weight multi-spectral aerial imaging system for nitrogen crop monitoring[J]. Precision Agriculture, 2012, 13(5):525-541. [16] NILSON T, KUUSK A. A reflectance model for the homogeneous plant canopy and its inversion[J]. Remote Sensing of Environment, 1989, 27:157-167. [17] MRIDHA N, SAHOO R N, SEHGAL V K, et al. Comparative evaluation of inversion approaches of the radiative transfer model for estimation of crop biophysical parameters[J]. International Agrophysics, 2015, 29:201-212. [18] DONG T F, MENG J H, SHANG J L, et al. Evaluation of chlorophyll-related vegetation indices using simulated Sentinel-2 data for estimation of crop fraction of absorbed photosynthetically active radiation[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2015, 8(8):4049-4059. [19] LI G X, WANG C, FENG M C, et al. Hyperspectral prediction of leaf area index of winter wheat in irrigated and rainfed fields[J]. PLoS One, 2017, 12(8):98-110. [20] 雷宇斌, 朱善宽, 郭云开,等. 极限学习机辅助下路域植被叶面积指数的反演[J]. 测绘通报, 2018(9):82-86. [21] 尤号田, 邢艳秋, 彭涛, 等. LiDAR不同强度校正法对樟子松叶面积指数估测的影响[J]. 测绘学报, 2018, 47(2):170-179. [22] JOCHEM V, JORDI M, LUIS A, et al. Machine learning regression algorithms for biophysical parameter retrieval:opportunities for sentinel-2 and -3[J]. Remote Sensing of Environment, 2012, 118:127-139. |