测绘通报 ›› 2020, Vol. 0 ›› Issue (2): 142-146.doi: 10.13474/j.cnki.11-2246.2020.0061

• 第七届测绘科学前沿技术论坛获奖论文 • 上一篇    下一篇

困难地区InSAR技术和加权融合的DEM生成

胡东明, 隋立春, 丁明涛   

  1. 长安大学地质工程与测绘学院, 陕西 西安 710054
  • 收稿日期:2019-05-20 修回日期:2019-06-27 出版日期:2020-02-25 发布日期:2020-03-04
  • 作者简介:胡东明(1995-),男,硕士生,主要研究方向为InSAR。E-mail:hdming1994@qq.com
  • 基金资助:
    国家自然科学基金(41372330);国家自然科学基金青年基金(41601345)

DEM generation in difficult areas based on InSAR and weighted fusion

HU Dongming, SUI Lichun, DING Mingtao   

  1. College of Geological Engineering and Geomatics, Chang'an University, Xi'an 710054, China
  • Received:2019-05-20 Revised:2019-06-27 Online:2020-02-25 Published:2020-03-04

摘要: 合成孔径雷达干涉测量(InSAR)技术具有全天时全天候的特点,可以大范围、快速、高效地提取DEM。即使在常年被云雾覆盖、降雨频繁的热带雨林地区,InSAR技术也能正常生成DEM。本文利用InSAR生成了研究区的DEM,验证了该方法的可行性。由于研究区植被茂密且有大面积的水域沼泽,导致InSAR处理过程中存在低相干和部分失相干现象,极易造成基于InSAR技术生成的DEM存在错误和空洞。针对这一问题,提出了像素级的以相干依据作为加权函数的融合方法,将SRTM DEM和AW3D30 DEM作为外源数据与InSAR DEM进行融合,解决了基于InSAR技术生成DEM存在错误和空洞的问题,保证了DEM的完整性。

关键词: 合成孔径雷达, InSAR, DEM生成, 相干系数加权, DEM融合

Abstract: Synthetic aperture radar interferometry (InSAR) technology has the characteristics of all-day and all-weather, and it can extract DEM quickly and efficiently in a wide range. DEM can be generated normally by InSAR technology even in rainforests covered by cloud and fog all year round. In the second chapter, DEM in the research area is generated by InSAR, which verifies the feasibility of this method. Due to dense vegetation in the study area and a large area of water swamp, low coherence and partial incoherence phenomena exist in the InSAR processing process, which easily leads to errors and cavities in DEM generated based on InSAR technology. To solve this problem, a pixel-level fusion method based on coherent basis as a weighted function is proposed in this paper, where SRTM DEM and AW3D30 DEM are used as exogenous data to fuse with InSAR DEM. In this way,the problems of errors and cavities in DEM generation based on InSAR technology can be solved, and the integrity of DEM can be guaranteed.

Key words: SAR, InSAR, DEM extraction, coherence factor weighting, DEM fusion

中图分类号: