[1] WULDER M A, BATER C W, COOPS N C, et al. The role of LiDAR in sustainable forest management[J]. Forestry Chronicle,2008, 84(6):807-826. [2] GROOT A, CORTINI F, WULDER M A. Crown-fibre attribute relationships for enhanced forest inventory:progress and prospects[J]. The Forestry Chronicle, 2015,91(3):266-279. [3] THOMPSON I D, MAHER S C, ROUILLARD D P, et al. Accuracy of forest inventory mapping:some implications for boreal forest management[J]. Forest Ecology and Management, 2007, 252(1):208-221. [4] WHITE J C, COOPS N C, WULDER M A, et al. Remote sensing technologies for enhancing forest inventories:a review[J]. Canadian Journal of Remote Sensing, 2016, 42(5):619-641. [5] TOKOLA T, SARKEALA J, LINDEN M V D. Use of topographic correction in Landsat TM-based forest interpretation in Nepal[J]. International Journal of Remote Sensing, 2001, 22(4):551-563. [6] JIA K, LIANG S, ZHANG L, et al. Forest cover class-ification using Landsat ETM+ data and time series MODIS NDVI data[J]. International Journal of Applied Earth Observation and Geoinformation, 2014, 33:32-38. [7] HILL R A, WILSON A K, GEORGE M, et al. Mapping tree species in temperate deciduous woodland using time-series multi-spectral data[J]. Applied Vegetation Science, 2010, 13(1):86-99. [8] TRUONG V T, HOANG T T, CAO D P, et al. JAXA annual forest cover maps for vietnam during 2015-2018 using ALOS-2/PALSAR-2 and auxiliary data[J]. Remote Sensing, 2019, 11(20):2412. [9] ISUHUAYLAS L A V, HIRATA Y, SANTOS L V, et al. Natural forest mapping in the Andes (Peru):a comparison of the performance of machine-learning algorithms[J]. Remote Sensing, 2018, 10(5):782. [10] XIE Z, CHEN Y, LU D, et al. Classification of land cover, forest, and tree species classes with ZiYuan-3 multispectral and stereo data[J]. Remote Sensing, 2019, 11(2):164. [11] 张兆鹏. 基于多源遥感数据的林地类型精细识别与变化监测研究[D].西安:西安科技大学,2018. [12] GRABSKA E, HOSTERT P, PFLUGMACHER D, et al. Forest stand species mapping using the Sentinel-2 time series[J]. Remote Sensing, 2019, 11(10):1197. [13] HOŠCIŁO A, LEWANDOWSKA A. Mapping forest type and tree species on a regional scale using multi-temporal Sentinel-2 data[J]. Remote Sensing, 2019, 11(8):929. [14] PASQUARELLA V J, HOLDEN C E, WOODCOCK C E. Improved mapping of forest type using spectral-temporal Landsat features[J]. Remote Sensing of Environment, 2018, 210(1):193-207. [15] KIM M, MADDEN M, WARNER T A. Forest type mapping using object-specific texture measures from multispectral ikonos imagery[J]. Photogrammetric Engineering & Remote Sensing, 2009(11):819-829. [16] PAX-LENNEY M, WOODCOCK C E, MACOMBER S A, et al. Forest mapping with a generalized classifier and Landsat TM data[J]. Remote Sensing of Environment, 2001, 77(3):241-250. [17] JIA M, WANG Z, WANG C, et al. A new vegetation index to detect periodically submerged mangrove forest using single-tide Sentinel-2 imagery[J]. Remote Sensing, 2019, 11(17):2043. [18] MARTIN M E, NEWMAN S D, ABER J D, et al. Determining forest species composition using high spectral resolution remote sensing data[J]. Remote Sensing of Environment, 1998, 65(3):249-254. [19] 郑利娟. 基于高分一/六号卫星影像特征的农作物分类研究[D].北京:中国科学院大学(中国科学院遥感与数字地球研究所),2017. [20] PERSSON M, LINDBERG E, REESE H. Tree species classification with multi-temporal Sentinel-2 data[J]. Remote Sensing, 2018, 10(11):1794. [21] 郑凡.黄山市森林资源现状及变化分析[J]. 安徽林业科技, 2015,41(3):54-57. [22] ESA. Introducing Sentinel-2[EB/OL].[2020-01-05]. http://www.esa.int/Our_Activities/Observing_the_Earth/Copernicus/Sentinel-2/Introducing_Sentinel-2. [23] 孙家抦.遥感原理及应用[M].武汉:武汉大学出版社, 2003. [24] 杨静学,王云鹏,杨勇.基于高程或气溶胶厚度与6S模型校正参数回归方程的遥感图像大气校正模型[J].遥感技术与应用,2009,24(3):331-340. [25] 唐守正. 林业发展要重视森林经营[N]. 中国绿色时报,2012-12-17(004). [26] 周学武,贺东北,柯善新,等.森林资源二类调查成果衔接林地"一张图"等成果问题探讨[J].中南林业调查规划,2016,35(4):5-8,13. [27] 张沁雨,李哲,夏朝宗,等.高分六号遥感卫星新增波段下的树种分类精度分析[J].地球信息科学学报,2019,21(10):1619-1628. [28] CLEVERS J G P W, GITELSON A A. Remote estimation of crop and grass chlorophyll and nitrogen content using red-edge bands on Sentinel-2 and -3[J]. International Journal of Applied Earth Observation & Geoinformation,2013,23:344-351. [29] 杨三红, 李晋敏. 基于DEM的森林空间分布格局的研究[J]. 山西林业科技, 2008(2):15-17,24. [30] FRANKLIN S E. Satellite remote sensing of forest type and landcover in the subalpine forest region, Kananaskis Valley, Alberta[J]. Geocarto International, 1992, 7(4):25-35. [31] 曾宏达. 基于DEM和地统计的森林资源空间格局分析——以武夷山山区为例[J]. 地球信息科学学报, 2005, 7(2):82-88. [32] CARLSON T N, RIPLEY D A. On the relation between NDVI, fractional vegetation cover, and leaf area index[J]. Remote Sensing of Environment, 1997, 62(3):241-252. [33] PEARSON R L, MILLER D L. Remote mapping of standing crop biomass for estimation of the productivity of the shortgrass prairie[J]. Remote Sensing of Environment, 1972,4(2):1357-1381. [34] HUETE A, DIDAN K, MIURA T, et al. Overview of the radiometric and biophysical performance of the MODIS vegetation indices[J]. Remote Sensing of Environment, 2002, 83(1-2):195-213. [35] MATSUSHITA B, YANG W, CHEN J, et al. Sensitivity of the enhanced vegetation index (EVI) and normalized difference vegetation index (NDVI) to topographic effects:a case study in high-density cypress forest[J]. Sensors, 2007, 7(11):2636-2651. [36] GITELSON A, MERZLYAK M N. Spectral reflectance changes associated with autumn senescence of aesculus hippocastanum L. and acer platanoides L. leaves. spectral features and relation to chlorophyll estimation[J]. Journal of Plant Physiology, 1994, 143(3):286-292. [37] ERDLE K, MISTELE B, SCHMIDHALTER U. Comparison of active and passive spectral sensors in discriminating biomass parameters and nitrogen status in wheat cultivars[J]. Field Crops Research,2011, 124(1):74-84. [38] BREIMAN L. Random forests[J]. Machine Learning, 2001, 45:5-32. [39] GISLASON P O, BENEDIKTSSON J A, SVEINSSON J R. Random forests for land cover classification[J]. Pattern Recognittion Letters, 2004, 27:294-300. [40] GHIMIRE B, ROGAN J, RODRÍGUEZ G V, et al. An evaluation of bagging, boosting, and random forests for land-cover classification in Cape Cod, Massachusetts, USA[J]. GIScience & Remote Sensing, 2012, 49(5):623-643. [41] RÄSÄNEN A, RUSANEN A, KUITUNEN M, et al. What makes segmentation good? a case study in boreal forest habitat mapping[J]. International Journal of Remote Sensing, 2013, 34(23):8603-8627. [42] SUN J, LAI Z. Airborne LiDAR feature selection for urban classification using random forests[J]. Geomatics and Information Science of Wuhan University, 2014, 39(11):1310-1313. [43] ATKINSON J T, ISMAIL R, ROBERTSON M. Mapping bugweed (solanum mauritianum) infestations in pinus patula plantations using hyperspectral imagery and support vector machines[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2014, 7(1):17-28. [44] 樊东东, 李强子, 王红岩, 等. 通过训练样本采样处理改善小宗作物遥感识别精度[J]. 遥感学报, 2019,23(4):730-742 [45] YANG C, LIU S, BRUZZONE L, et al. A feature-metric-based affinity propagation technique for feature selection in hyperspectral image classification[J]. IEEE Geoscience and Remote Sensing Letters, 2013, 10(5):1152-1156. [46] 何云,黄翀,李贺,等.基于Sentinel-2A影像特征优选的随机森林土地覆盖分类[J].资源科学,2019,41(5):992-1001. [47] IMMITZER M, ATZBERGER C, KOUKAL T. Tree species classification with random forest using very high spatial resolution 8-band WorldView-2 satellite data[J]. Remote Sensing, 2012, 4(9):2661-2693. [48] CONGALTON R G. Considerations and techniques for assessing the accuracy of remotely sensed data[C]//Proceedings of the 12th Canadian Symposium on Remote Sensing Geoscience and Remote Sensing Symposium, Vancouver:IEEE, 1989. [49] 赵英时. 遥感应用分析原理与方法[M]. 北京:科学出版社, 2003. |