测绘通报 ›› 2021, Vol. 0 ›› Issue (11): 54-58,64.doi: 10.13474/j.cnki.11-2246.2021.338

• 学术研究 • 上一篇    下一篇

改进D-LinkNet模型在国产卫星影像云检测中的应用

刘广进1,2, 王光辉1,2, 毕卫华3, 刘慧杰2, 杨化超1   

  1. 1. 中国矿业大学环境与测绘学院, 江苏 徐州 221116;
    2. 自然资源部国土卫星遥感应用中心, 北京 100048;
    3. 皖北煤电集团有限责任公司, 安徽 宿州 234002
  • 收稿日期:2021-03-29 出版日期:2021-11-25 发布日期:2021-12-02
  • 通讯作者: 王光辉。E-mail:wanggh@lasac.cn
  • 作者简介:刘广进(1998-),男,硕士生,研究方向为遥感影像云检测。E-mail:1538868186@qq.com
  • 基金资助:
    国家重点研发计划;国家自然科学基金(2017YFE0119600)

Application of improved D-LinkNet model in cloud detection of domestic satellite image

LIU Guangjin1,2, WANG Guanghui1,2, BI Weihua3, LIU Huijie2, YANG Huachao1   

  1. 1. School of Environment and Spatial Informatics, China University of Mining and Technology, Xuzhou 221116, China;
    2. Land Satellite Remote Sensing Application Center, MNR, Beijing 100048, China;
    3. Wanbei Coal and Electricity Co., Ltd., Suzhou 234002, China
  • Received:2021-03-29 Online:2021-11-25 Published:2021-12-02

摘要: 大部分国产卫星波段少,利用传统方法难以进行云检测。本文提出了基于改进D-LinkNet模型的云检测算法,并应用于国产卫星遥感影像的云检测。首先,利用自然资源部国土卫星遥感应用中心提供的人工勾云样本生成二值图标签;其次,对D-LinkNet50的编码器进行改进,使用带有通道注意力机制的ResNeSt50-Block替换原始的ResNet50-Block;然后,对损失函数进行加权,测试分析发现只用交叉熵损失作为损失函数时,检测精度更高;最后,使用条件随机场(CRF)对预测结果进行后处理。试验结果表明,改进D-LinkNet模型在测试集上的IoU提升了1.93%,精度提升了2.45%,保持了较好的云边缘信息,云检测效果高于原D-LinkNet模型。

关键词: 云检测, D-LinkNet, 注意力机制, 国产卫星, 条件随机场

Abstract: Due to the lack of band of most domestic satellites, cloud detection is difficult using traditional methods. In this paper, a cloud detection algorithm based on improved D-LinkNet model is proposed and applied to domestic satellite remote sensing image cloud detection. Firstly, the binary image label is generated by using ResNeSt50-Block with channel attention mechanism. Secondly, the encoder of D-LinkNet50 is improved by using ResNeSt50-Block with channel attention mechanism to replace the original ResNet50-Block. And then the loss function is weighted, and it is found that the cross-entropy loss is the only loss function with higher precision. Finally, the conditional random field (CRF) is used to post-process the predicted results. The experimental results show that the MIoU and precision of the improved D-LinkNet model are improved by 1.93% and 2.45% respectively, and the cloud edge information is kept well. It can be used in cloud detection, and the effect is obviously higher than that of the original D-LinkNet model.

Key words: cloud detection, D-LinkNet, attention mechanism, domestic satellite, conditional random field

中图分类号: