测绘通报 ›› 2022, Vol. 0 ›› Issue (5): 126-132.doi: 10.13474/j.cnki.11-2246.2022.0153

• 技术交流 • 上一篇    下一篇

基于HRNet的高分辨率遥感影像建筑物变化信息提取

陈智朗1,2,3, 付振华1,2,3, 朱紫阳1,2,3, 王慧慧4, 刘沁雯4, 杨钰灵4, 许耿然1,2,3   

  1. 1. 广东省国土资源测绘院, 广东 广州 510663;
    2. 自然资源部华南热带亚热带自然资源 重点实验室, 广东 广州 510663;
    3. 广东省自然资源科技协同创新中心, 广东 广州 510663;
    4. 武汉汉达瑞科技有限公司, 湖北 武汉 430299
  • 收稿日期:2021-09-06 发布日期:2022-06-08
  • 通讯作者: 付振华。E-mail:13602750392@qq.com
  • 作者简介:陈智朗(1995-),男,主要从事遥感卫星影像处理方面的研究工作。E-mail:522147881@qq.com
  • 基金资助:
    广东省海洋经济发展(海洋六大产业)专项(GDNRC[2020]051);广东省省级科技计划(2018B020207002);自然资源部地理国情监测重点实验室开放基金重点项目(2020NGCMZD03)

HRNet-based extraction of building change information from high-resolution remote sensing images

CHEN Zhilang1,2,3, FU Zhenhua1,2,3, ZHU Ziyang1,2,3, WANG Huihui4, LIU Qinwen4, YANG Yuling4, XU Gengran1,2,3   

  1. 1. Surveying and Mapping Institute Lands and Resource Department of Guangdong Province, Guangzhou 510663, China;
    2. Key Laboratory of Natural Resources Monitoring in Tropical and Subtropical Area of South China, Ministry of natural resources, Guangzhou 510663, China;
    3. Guangdong Science and Technology Collaborative Innovation Center for Natural Resources, Guangzhou 510663, China;
    4. Wuhan Handleray Technology Co., Ltd., Wuhan 430299, China
  • Received:2021-09-06 Published:2022-06-08

摘要: 建筑物图斑变化检测是遥感影像信息提取的重要内容之一,对于土地调查、自然资源常态化监测、土地执法监测等具有重要意义。岭南地区建设结构复杂,高分辨率遥感影像信息丰富,包含建筑结构细节多种多样,加上成像的季节不同、时间不同等因素导致建筑物变化信息的自动提取十分困难。针对此问题,本文提出了基于HRNet的语义分割模型,通过筛选保留高分辨率的特征层,从而保留更细节的图像信息。此外,结合图像分割二值化对结果进行优化,在一定程度上提高了高分辨率遥感影像建筑物变化自动检测的能力。

关键词: 高分辨率遥感影像, 建筑物变化信息提取, HRNet, 图像分割二值化

Abstract: Building change extraction is one of the important research areas of remote sensing image information extraction, which is of great significance for land survey, natural resources monitoring and land law enforcement. The complex construction structure in Lingnan area of China contains a variety of building structure details, which reflect rich information on the high-resolution remote sensing images, and the factors of influence such as abundant data sources and imaging seasonal differences. It makes the automatic extraction of building change information very difficult. To address this problem, this paper proposes a semantic segmentation model based on HRNet, which achieves the retention of more detailed texture information by screening the feature layers that retain high resolution. On this basis, the automatic detection capability of building changes in high-resolution remote sensing images is improved by GraphCut binarization optimization.

Key words: high-resolution remote sensing images, building change extraction, HRNet, GraphCut

中图分类号: