测绘通报 ›› 2022, Vol. 0 ›› Issue (7): 12-17,53.doi: 10.13474/j.cnki.11-2246.2022.0196

• 海洋生态环境监测 • 上一篇    下一篇

茅尾海入海河口池塘养殖污染状况遥感调查

胡义强1,2, 杨骥1,2, 荆文龙1,2, 彭小燕3, 蓝文陆3, 彭梦微3, 张雨萌4   

  1. 1. 广东省科学院广州地理研究所(广东省遥感与地理信息系统应用重点实验室, 广东省地理时空大数据工程实验室), 广东 广州 510070;
    2. 南方海洋科学与工程广东省实验室(广州), 广东 广州 511458;
    3. 广西壮族自治区海洋环境监测中心站, 广西 北海 536000;
    4. 广东工业大学环境生态工程研究院, 广东 广州 510006
  • 收稿日期:2021-09-29 修回日期:2022-05-23 发布日期:2022-07-28
  • 通讯作者: 杨骥。E-mail:yangji@gdas.ac.cn
  • 作者简介:胡义强(1990—),男,硕士,工程师,主要从事生态环境遥感研究。E-mail:hyiqiang@gdas.ac.cn
  • 基金资助:
    广西科技重点研发计划(桂科AB20297037);国家自然科学基金(41976189;41976190);广东省科学院实施创新驱动发展能力建设专项(2019GDASYL-0301001);广东省科技计划项目(2021B1212100006);广东省引进创新创业团队项目(2016ZT06D336);南方海洋科学与工程广东省实验室(广州)(GML2019ZD0301);人才团队引进重大专项(GML2019ZD0301)

Remote sensing investigation on water pollution of pond aquaculture in estuary of Maowei Sea

HU Yiqiang1,2, YANG Ji1,2, JING Wenlong1,2, PENG Xiaoyan3, LAN Wenlu3, PENG Mengwei3, ZHANG Yumeng4   

  1. 1. Key Lab of Guangdong for Utilization of Remote Sensing and Geographical Information System(Guangdong Province Engineering Laboratory for Geographic Spatiotemporal Big Data, Guangzhou Institute of Geography, Guangdong Academy of Sciences), Guangzhou 510070, China;
    2. Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China;
    3. Marine Environmental Monitoring Center of Guangxi, Beihai 536000, China;
    4. Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou 510006, China
  • Received:2021-09-29 Revised:2022-05-23 Published:2022-07-28

摘要: 针对广西茅尾海入海河口池塘养殖污染问题,本文利用无人机多光谱遥感影像和实测水质数据,建立了反映水体营养状态的叶绿素a (Chl-a)、化学需氧量(COD)、悬浮物(SS)、总氮(TN)、总磷(TP)5种水质参数,反演光谱特征及遥感反演模型,并利用湖泊综合营养指数法对水体富营养化状态进行评价。研究结果表明:①Chl-a与蓝、近红外波段相关性显著,COD与红、红边波段相关性显著,SS与红边波段相关性显著,TN与近红外波段相关性显著,TP与蓝、绿波段相关性显著;②在建立的几种水质参数反演模型中,二次多项式函数反演模型综合效果最佳;③池塘养殖区水体富营养指数多集中在60~80,属于中度和重度富营养化程度,且近岸水体富营养化程度大多低于远岸。

关键词: 池塘养殖, 无人机, 水质参数, 遥感反演, 营养评价

Abstract: Aiming at the pollution of pond breeding in mouth of Mawei Sea in Guangxi, this paper based on unmanned aerial vehicle (UAV) multi-spectral remote sensing images and measured water quality data, establish spectral characteristics and remote sensing inversion model of five water quality parameters, which can reflecting the nutritional state of water bodies: Chlorophyll-A (Chl-A), Chemical Oxygen Demand (COD), Suspended Solid (SS), Total Nitrogen (TN) and Total Phosphorus (TP). Based on the inversion results, we evaluate the eutrophication status of water body. The results show that: ①Chl-A is significantly correlated with Blue and NIR bands, COD is highly correlated with Red and Red Edge bands, SS is highly correlated with Red Edge bands, TN issignificantly correlated with NIR bands, TP is highly correlated with Blue and Green bands. ②Among the established inversion models of water quality parameters, Quadratic polynomial function inversion model has the best fitting effect.③We found that the eutrophication index of water bodies in pond aquaculture area mainly ranged from 60 to 80, belonging to moderate and severe eutrophication degree, and the eutrophication degree of near-shore water bodies was lower than that of far-shore water bodies in spatial distribution.

Key words: pond aquaculture, UAV, water quality parameters, remote sensing inversion, nutritional evaluation

中图分类号: