测绘通报 ›› 2022, Vol. 0 ›› Issue (7): 49-53.doi: 10.13474/j.cnki.11-2246.2022.0202

• 学术研究 • 上一篇    下一篇

结合扩展卡尔曼滤波与基于点线的最近点迭代扫描匹配算法的机器人位姿自适应估计

岳胜杰1, 王红旗1,2, 刘群坡1,2, 赵荣亮1   

  1. 1. 河南理工大学电气工程与自动化学院, 河南 焦作 454000;
    2. 河南省智能装备直驱技术与控制国际联合实验室, 河南 焦作 454000
  • 收稿日期:2021-09-29 修回日期:2022-05-25 出版日期:2022-07-25 发布日期:2022-07-28
  • 通讯作者: 刘群坡。E-mail:lqpny@hpu.edu.cn
  • 作者简介:岳胜杰(1995—),男,硕士生,研究方向为运动驱动与控制。E-mail:2673189645@qq.com
  • 基金资助:
    国家重点研发计划(2016YFC0600906);河南省高校科技创新团队(20IRTSTHN019);河南省创新型科技人才队伍建设工程(CXTD2016054);河南科技攻关项目(172102210270)

Adaptive pose estimation for robot based on extended Kalman filter and point-line iterative closest point

YUE Shengjie1, WANG Hongqi1,2, LIU Qunpo1,2, ZHAO Rongliang1   

  1. 1. School of Mechanical and Power Engineering, Henan Polytechnic University, Jiaozuo 454000, China;
    2. Henan International Joint Laboratory of Direct Drive and Control of Intelligent Equipment, Jiaozuo 454000, China
  • Received:2021-09-29 Revised:2022-05-25 Online:2022-07-25 Published:2022-07-28

摘要: 针对机器人利用单一位姿估计方法累积误差大、精度低的问题,本文提出了一种基于扩展卡尔曼滤波算法(EKF)和基于点线的最近点迭代扫描匹配算法(PL-ICP)的机器人位姿自适应估计方法。为了减少轮式里程计造成的累积误差,利用Mahony算法对陀螺仪和加速度计进行姿态解算,进而基于扩展卡尔曼滤波融合轮式里程计初步估计机器人位姿;为了减少轮子变形、打滑等对机器人位姿的影响,利用PL-ICP点云匹配算法构建单线激光里程计,对机器人位姿再次进行估计;为了提高位姿估计的准确度,提出了一种基于两种位姿总均方差和前后时刻位姿误差构建累积误差的自适应修正算法,通过分析两种位姿总均方差及前后时刻位姿误差,得到全局最优权重因子和局部动态权重因子,实现累积误差修正因子的自适应调整,得到机器人更精确的位姿估计。试验结果表明,该方法可对机器人的位姿累积误差进行修正,显著提高机器人的位姿估计精度。

关键词: 激光里程计, EKF, 机器人位姿估计, PL-ICP, 多源信息融合

Abstract: In this paper, a method of robot pose correction based on multi-source information fusion using extended Kalman filter (EKF)and point-line iterative closest point(PL-ICP)point cloud matching algorithm is proposed to solve the problems of large cumulative error and low accuracy of single pose estimation method for robots. In order to reduce the cumulative error caused by the wheel odometer, Mahony algorithm is used to calculate the attitude of the gyroscope and accelerometer. The preliminary estimation of robot pose is obtained by fusing the wheel odometer based on the extended Kalman filter. In order to reduce the influence of wheel deformation and slip on the pose of the robot, using the PL-ICP point cloud matching algorithm to construct a single-line laser odometer to estimate the robot pose again; In order to improve the accuracy of pose estimation, based on the total mean square error of the two poses and the pose error at the time before and after, an adaptive correction algorithm for the cumulative error is constructed. The method in this paper obtains global optimal weight factor and local dynamic weight factor to realize the adaptive adjustment of the cumulative error correction factor by analyzing the total mean square error of the two poses and the pose error at the time before and after, which can obtain more accurate pose estimation of the robot. Experimental results show that this method can correct the cumulative error of the robot's pose, and significantly improve the accuracy of robot pose estimation.

Key words: laser odometer, EKF, robot pose estimation, PL-ICP, multi-source information fusion

中图分类号: