测绘通报 ›› 2022, Vol. 0 ›› Issue (8): 149-154.doi: 10.13474/j.cnki.11-2246.2022.0248

• 技术交流 • 上一篇    下一篇

结合马氏距离与梯度描述符的稠密匹配

陈贺1, 郭增长1,2, 刘轩2   

  1. 1. 河南测绘职业学院, 河南 郑州 451464;
    2. 河南理工大学测绘与国土信息工程学院, 河南 焦作 454000
  • 收稿日期:2021-12-27 修回日期:2022-06-21 发布日期:2022-09-01
  • 作者简介:陈贺(1983-),男,硕士,讲师,主要从事测绘地理信息技术研究与教学工作。E-mail:84421530@qq.com
  • 基金资助:
    陕西省土地整治重点实验室开放基金(2019-JC09)

Dense matching combining Mahalanobis distance and gradient descriptor

CHEN He1, GUO Zengzhang1,2, LIU Xuan2   

  1. 1. Henan College of Surveying and Mapping, Zhengzhou 451464, China;
    2. School of Surveying and Land Information Engineering, Henan Polytechnic University, Jiaozuo 454000, China
  • Received:2021-12-27 Revised:2022-06-21 Published:2022-09-01

摘要: 针对稀疏匹配点无法满足三维重建工作需要及传统密集匹配算法面对明暗变换影像匹配无力等问题,本文提出了一种结合马氏距离与梯度描述符的密集匹配方案。该方案首先利用初始可靠同名点建立同名三角网;然后以各三角形的对应中点作为加密匹配基元,以描述符与马氏距离作为两种影响因素,建立得分计算公式;最后以超过该得分阈值者作为匹配点,遍历所有三角形,更新三角网重复上述步骤,直至没有新的匹配点产生。利用网络公开数据集进行验证,试验结果表明,本文提出的密集匹配方案较好地解决了传统算法面对明暗变换影像适应性较差的问题,同时对多种变换影像有着较好的适应性与稳定性。

关键词: 密集匹配, Delaunay三角网, 马氏距离, 梯度描述符, 得分计算

Abstract: Aiming at the problems that sparse matching points can not meet the needs of 3D reconstruction and the traditional dense matching algorithm is unable to match the light dark transform image, this paper proposes a dense matching scheme combining Mahalanobis distance and gradient descriptor. The scheme uses the initial reliable homonymous points to establish a homonymous triangle network, and uses the corresponding midpoint of each triangle as the encryption matching primitive, take descriptor and Mahalanobis distance as two influencing factors to set up score calculation formula, take the person who exceeds the threshold as the matching point, traverse all triangles, update the triangulation network, and repeat the above steps until no new matching point is generated. With the help of network public data set, the experimental results show that the dense matching scheme proposed in this paper can better solve the problem of poor adaptability of traditional algorithms to light and dark transform images, and has good adaptability and stability to a variety of transform images.

Key words: dense matching, Delaunay triangulation, Mahalanobis distance, gradient descriptor, score calculation

中图分类号: