[1] LI Y F, BAI Y. Comparison of characteristics between fatal and injury accidents in the highway construction zones[J]. Safety Science, 2008, 46(4):646-660. [2] 公安部交通管理局.中华人民共和国道路交通事故统计年报(2016年度)[R].北京:公安部交通管理局, 2017. [3] 《中国公路学报》编辑部.中国交通工程学术研究综述·2016[J].中国公路学报, 2016, 29(6):1-161. [4] 方守恩,郭忠印,杨轸.公路交通事故多发位置鉴别新方法[J].交通运输工程学报, 2001,1(1):90-94. [5] WRIGHT C C, ABBESS C R, JARRETT D F. Estimating the regression-to-mean effect associated with road accident black spot treatment:towards a more realistic approach[J]. Accident Analysis&Prevention,1988,20(3):199-214. [6] 裴玉龙,丁建梅.鉴别道路交通事故多发点的突出因素法[J].中国公路学报, 2005,18(3):99-103. [7] 沙爱敏.高速公路交通事故分析及预防对策研究[D].南京:东南大学, 2006. [8] 王雪松,宋洋,黄合来,等.基于分层负二项模型的城郊公路安全影响因素研究[J].中国公路学报, 2014, 27(1):100-106. [9] BÍL M, ANDRÁŠIK R, SEDONÍK J. Which curves are dangerous?A network-wide analysis of traffic crash and infrastructure data[J]. Transportation Research Part A:Policy and Practice, 2019, 120:252-260. [10] ELVIK R, VAA T, HOYE A, et al. The handbook of road safety measures[M]. 2nd ed. Bingley, UK:Emerald, 2009. [11] THOMAS I. Spatial data aggregation:exploratory analysis of road accidents[J].Accident Analysis&Prevention, 1996, 28(2):251-264. [12] STEENBERGHEN T, DUFAYS T, THOMAS I, et al. Intra-urban location and clustering of road accidents using GIS:a Belgian example[J].International Journal of Geographical Information Science, 2004, 18(2):169-181. [13] 孙梦婷,魏海平,李星滢,等.基于路况数据的城市道路交通事件点检测[J].地理与地理信息科学, 2019, 35(6):9-14. [14] 陆化普,罗圣西,李瑞敏.基于GIS分析的深圳市道路交通事故空间分布特征研究[J].中国公路学报, 2019, 32(8):156-164. [15] FLAHAUT B, MOUCHART M, MARTIN E S, et al.The local spatial autocorrelation and the kernel method.for identifying black zones:a comparative approach[J].Accident Analysis and Prevention, 2003, 35(6):991-1004. [16] OUNI F, BELLOUMI M. Pattern of road traffic crash hot zones versus probable hot zones in Tunisia:a geospatial analysis[J]. Accident Analysis and Prevention, 2019, 128:185-196. [17] 聂可,王振声,杜清运,等.基于网络约束方法的交通事故空间点格局分析[J].地理信息世界, 2017, 24(6):50-56. [18] 王颖志,王立君.基于网络时空核密度的交通事故多发点鉴别方法[J].地理科学, 2019, 39(8):1238-1245. [19] ANDERSON T K. Kernel density estimation and K-means clustering to profile road accident hotspots[J].Accident Analysis and Prevention, 2009, 41(3):359-364. [20] GHADI M, TÖRÖK Á. A comparative analysis of black spot identification methods and road accident segmentation methods[J]. Accident Analysis and Prevention, 2019, 128:1-7. [21] 耿超,彭余华.基于动态分段和DBSCAN算法的交通事故黑点路段鉴别方法[J],长安大学学报(自然科学版), 2018, 38(5):131-138. [22] 郭璘,周继彪,董升,等.基于改进K-means算法的城市道路交通事故分析[J].中国公路学报, 2018, 31(4):270-279. [23] ESTER M, KRIEGEL H P, SANDER J, et al. A density-based algorithm for discovering clusters in large spatial databases with noise[C]//Proceedings of the 2nd International Conference on Knowledge Discovery and Data Mining. Menlo Park:AAAI Press,1996:226-231. [24] 张子扬.公安部公布2017年度全国十大事故多发路段[EB/OL].[2021-11-23].http://www.ce.cn/xwzx/gnsz/gdxw/201802/01/t20180201_28019289.shtml. [25] 湖南高速33处事故易发路段,看看都在哪?[EB/OL].[2021-11-23].https://www.sohu.com/a/195396550_99977726. |