测绘通报 ›› 2022, Vol. 0 ›› Issue (12): 42-50.doi: 10.13474/j.cnki.11-2246.2022.0355

• 学术研究 • 上一篇    下一篇

一种基于改进CoHOG的视觉SLAM算法

于尧1,2, 孙新柱1,2, 郭俊阳1,2, 陈孟元1,2   

  1. 1. 安徽工程大学电气工程学院, 安徽 芜湖 241000;
    2. 高端装备先进感知与智能控制教育部重点实验室, 安徽 芜湖 241000
  • 收稿日期:2021-12-24 出版日期:2022-12-25 发布日期:2023-01-05
  • 通讯作者: 孙新柱。E-mail:xzsun@ahpu.edu.cn
  • 作者简介:于尧(1996-),男,硕士生,研究方向为智能信息处理与应用。E-mail:173077286@qq.com
  • 基金资助:
    国家自然科学基金(61903002);安徽省高校协同创新项目(GXXT-2021-050);芜湖市科技计划(2020yf59)

Visual SLAM algorithm based on improved CoHOG

YU Yao1,2, SUN Xinzhu1,2, GUO Junyang1,2, CHEN Mengyuan1,2   

  1. 1. College of Electrical Engineering, Anhui Polytechnic University, Wuhu 241000, China;
    2. Key Laboratory of Advanced Perception and Intelligent Control of High-end Equipment, Wuhu 241000, China
  • Received:2021-12-24 Online:2022-12-25 Published:2023-01-05

摘要: 移动机器人在SLAM的闭环检测环节计算量大、运行时间长、匹配误差大,从而导致闭环检测精度较低。针对该问题,本文在CoHOG闭环检测算法的基础上进行改进,将算法中的HOG描述符改进为GDF-HOG描述符,以增强图像特征表现,提高图像特征提取效率;在匹配环节前添加GDF-HOG全局粗匹配,以减少视觉模板的数量,提高算法的计算效率;在匹配环节后添加感兴趣区域(ROI)位置匹配进行检验,以减少闭环检测的假阳性,提高准确率。将本文闭环检测算法与RatSLAM相结合,在公开数据集与真实环境中进行测试,测试结果表明,本文算法在闭环检测环节的准确率较高,且对环境的适应能力较强。

关键词: 图像识别及其装置, 视觉位置识别, CoHOG算法, 闭环检测, RatSLAM

Abstract: The mobile robot has a large amount of calculation, long running time and low accuracy of matching in the closed-loop detection link of SLAM. So this paper improves the CoHOG closed-loop detection algorithm, improves the HOG descriptor in the algorithm to GDF-HOG descriptor, to enhance image characteristics and improve the efficiency of image feature extraction. Before the matching process, GDF-HOG global rough matching is added to reduce the number of visual templates and improve the computational efficiency of the algorithm. After the matching process, region of interest (ROI) position matching is added for testing to reduce false positives of closed-loop detection and improve accuracy.Finally, the closed-loop detection algorithm proposed in this paper is combined with RatSLAM, and tested in open data sets and real environments. The test results show that the proposed algorithm has advantages in the accuracy of closed-loop detection and adaptability to the environment.

Key words: image recognition and apparatus, visual place recognition, CoHOG algorithm, closed-loop detection, RatSLAM

中图分类号: